为提高脱乙酰基酶的可溶性表达含量,对前期挖掘的脱乙酰基酶NAP-Das2.3基因进行异源表达及发酵优化。将脱乙酰基酶NAP-Das2.3基因克隆至枯草芽孢杆菌表达载体pP43NMK的nprB信号肽下游,转入B. subtilis WB800构建了重组工程菌B. subtilis WB800/pP43NMK/nap-das2.3,并对重组菌培养及发酵产酶条件进行了优化。重组菌最适培养和产酶条件分别为甘油6 g/L、牛肉膏30 g/L、NaCl 10 g/L;pH 7.5、培养温度37 ℃、装液量100 mL (500 mL摇瓶)、培养30 h。在优化的条件下,发酵液中脱乙酰基酶酶活达到106.42 U/L,较出发条件提高了424.68倍,在5 L发酵罐培养30 h后,脱乙酰基酶酶活达到116.13 U/L。研究实现了脱乙酰基酶的异源高效可溶性表达,为脱乙酰基酶的应用提供了基础。
In order to improve the soluble expression of deacetylase, a deacetylase NAP-Das2.3 was heterologously expressed in Bacillus subtilis, and the fermentation condition was optimized. The genes of NAP-Das2.3 were cloned into the downstream of the nprB signal peptide in pP43NMK (an expression vector of B. subtilis), and the resulting expression plasmid was transformed into B. subtilis WB800 to construct the recombinant strain B. subtilis WB800/pP43NMK/nap-das2.3. The optimum conditions for the recombinant strain for cultivation and enzyme production were as follows: 6 g/L glycerol, 30 g/L beef extract, 10 g/L NaCl, 100 mL/500 mL shake flask of medium and incubated at pH 7.5 and 37 ℃ for 30 h. Under the optimal conditions, the deacetylase activity reached 106.42 U/L, which was 424.68 times higher than that of the original conditions. After 30 h incubation in a 5 L fermenter, the deacetylase activity reached 116.13 U/L. This study achieved heterologous soluble overexpression of recombinant deacetylase, which is helpful for its development and application.
[1] COLE M. Properties of the penicillin deacylase enzyme of Escherichia coli[J]. Nature, 1964, 203(4 944): 519-520.
[2] ENDO Y. N-Acyl-L-aromatic amino acid deacylase in animal tissues[J]. Biochimica Et Biophysica Acta, 1978, 523(1): 207-214.
[3] KUCHAR L, LEDVINOVA J, LENFELD J, et al. Synthesis of specific sphingolipids isoforms using immobilized sphingolipid ceramide N-deacylase[J]. Journal of Inherited Metabolic Disease, 2008, 31: 107-107.
[4] HUANG F T, HAN Y B, FENG Y, et al. A facile method for controlling the reaction equilibrium of sphingolipid ceramide N-deacylase for lyso-glycosphingolipid production. Journal of Lipid Research, 2015, 56(9): 1 836-1 842.
[5] LIU J, JIA Z, SHA L, et al. Identification and characterization of a chitin deacetylase from a metagenomic library of deep-sea sediments of the Arctic Ocean[J]. Gene, 2016, 590(1):79-84.
[6] ZHAO Y, PARK R D, MUZZARELLI R A A. Chitin deacetylases: properties and applications[J]. Marine Drugs, 2010, 8(1): 24-46.
[7] GRIFOLL-ROMERO L, PASCUAL S, ARAGUNDE H, et al. Chitin deacetylases: Structures, specificities, and biotech applications[J]. Polymers, 2018, 10(4): 352.
[8] ROMANO D, GANDOLFI R, GUGLIELMETTI S, et al. Enzymatic hydrolysis of capsaicins for the production of vanillylamine using ECB deacylase from Actinoplanes utahensis[J]. Food Chemistry, 2011, 124(3): 1 096-1 098.
[9] 崔建卫, 邹树平,郑裕国. 棘白菌素B脱酰基酶的研究[J].生物技术通讯, 2016, 27(4): 592-595.
[10] SHAO L, LI J, LIU A J, et al. Efficient bioconversion of Echinocandin B to its nucleus by overexpression of deacylase genes in different host strains[J]. Applied and Environmental Microbiology, 2013, 79(4): 1 126-1 133.
[11] YANG H, ZHENG G, PENG X, et al. D-amino acids and D-Tyr-tRNATyr deacylase: Stereospecificity of the translation machine revisited[J]. Febs Letters, 2003, 552(2): 95-98.
[12] SINGH S M, PANDA A K. Solubilization and refolding of bacterial inclusion body proteins[J]. Journal of Bioscience & Bioengineering, 2005, 99(4): 303-310.
[13] WALID M Q, HESTERBERG L K, SEEFELDT M B. Confronting high-throughput protein refolding using high pressure and solution screens[J]. Protein Expression & Purification, 2007, 55(2): 209-224.
[14] CINTIA R, AMIR A, TAWFIK D S. Directed evolution of proteins for heterologous expression and stability[J]. Current Opinion in Structural Biology, 2005, 15(1): 50-56.
[15] 张宇萌, 童梅,陆小冬,等. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J].中国生物工程杂志, 2016, 36(5): 118-124.
[16] 朱红裕, 李强. 外源蛋白在大肠杆菌中的可溶性表达策略[J].过程工程学报, 2006, 6(1): 150-155.
[17] SINGH S M, APARMA S, UPADHYAY A K, et al. Solubilization of inclusion body proteins using n-propanol and its refolding into bioactive form[J]. Protein Expression & Purification, 2012, 81(1): 75-82.
[18] 刘晓庆, 那日,郭九峰.漆酶基因异源表达及其酶活性的研究进展[J].安徽农业科学,2016,44(1):18-21.
[19] BERIAULT J N, HORSMAN G P, DEVINE M D. Phloem transport of D,L-glufosinate and acetyl-L-glufosinate in glufosinate-resistant and -susceptible Brassica napus[J]. Plant Physiology, 1999, 121(2): 619-627.
[20] ZHANG H C, YANG J, YANG G W, et al. Production of recombinant protein G through high-density fermentation of engineered bacteria as well as purification[J]. Molecular Medicine Reports, 2015, 12(2): 3 132-3 138.
[21] SPIZIZEN J. Transfomation of biochemically deficient strain of Bacilius subtilis by deoxyribonucleate[J]. Proceedings of the National Academy of Science USA, 1958, 44(10):1 072-1 078.
[22] 李瑞芳, 薛雯雯,黄亮,等. 枯草芽孢杆菌感受态细胞的制备及质粒转化方法研究[J].生物技术通报,2011(5):227-230.
[23] CHOU C P, TSENG J H. Effect of carbon on inclusion body formation upon overproduction of periplasmic penicillin acylase in Escherichia coli[J]. Journal of the Chinese Institute of Chemical Engineers, 2000, 31(3):219-224.
[24] 舒群峰, 徐美娟,李静,等. 钝齿棒杆菌中异源表达N-乙酰鸟氨酸脱乙酰基酶合成L-鸟氨酸的研究[J].中国生物工程杂志, 2018, 38(7):29-39.
[25] WANG Y, SONG J Z, YANG Q, et al. Cloning of a heatstable chitin deacetylase gene from Aspergillus nidulans and its functional expression in Escherichia coli[J]. Applied Biochemistry and Biotechnology, 2010, 162(3): 843-854.
[26] KANG L, CHEN X, ZHAI C, et al. Synthesis and high expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris GS115[J]. Journal of Microbiology and Biotechnology, 2012, 22(9): 1 202-1 207.