综述与专题评论

荧光蛋白及其在微生物过程工程中的应用

  • 毛洪丽 ,
  • 刘雨 ,
  • 张建国
展开
  • (上海理工大学 医疗器械与食品学院,食品科学与工程研究所,上海,20093)
硕士研究生(张建国副教授为通讯作者,E-mail:jgzhang@usst.edu.cn)。

收稿日期: 2018-11-27

  网络出版日期: 2019-10-24

基金资助

国家自然科学基金项目(31870045、21306112)

Fluorescent proteins and their applications in microbial strain engineering

  • MAO Hongli ,
  • LIU Yu ,
  • ZHANG Jianguo
Expand
  • (Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, Universityof Shanghai for Science and Technology, Shanghai 200093,China)

Received date: 2018-11-27

  Online published: 2019-10-24

摘要

荧光蛋白是一系列在紫外光激发下产生荧光的发光蛋白,以其荧光稳定性好、灵敏度高、无毒害等优点广泛应用于诸多领域。目前成功开发的荧光蛋白有绿色荧光蛋白(green fluorescent protein, GFP)、蓝色荧光蛋白(blue fluorescent protein, BFP)、青色荧光蛋白(cyan fluoroscent protein, CFP)、黄色荧光蛋白(yellow fluorescent protein, YFP)、红色荧光蛋白(red fluorescent protein, RFP)。荧光蛋白在微生物工程中菌株筛选方面的应用逐渐成熟,菌株筛选是菌种工程中较为耗时、费力的步骤,荧光蛋白为菌株筛选提供了新突破口。本文从荧光蛋白的基础研究出发,综述了近年来荧光蛋白在微生物工程中菌株筛选方面的进展和基于荧光蛋白的新型微生物筛选技术,为荧光蛋白等其他发光蛋白在微生物菌种工程的应用提供参考。

本文引用格式

毛洪丽 , 刘雨 , 张建国 . 荧光蛋白及其在微生物过程工程中的应用[J]. 食品与发酵工业, 2019 , 45(17) : 252 -257 . DOI: 10.13995/j.cnki.11-1802/ts.019462

Abstract

Fluorescent proteins are a series of luminescent proteins under UV light. Fluorescent proteins are widely used as markers in many fields due to their good stability, high sensitivity and non-toxicity. Currently, successfully established fluorescent proteins include green fluorescent protein (GFP), blue fluorescent protein (BFP), cyan fluorescent protein (CFP), yellow fluorescent protein (YFP) and red fluorescent protein (RFP). Applications of fluorescent proteins in strain screening during microbial engineering have been well developed. Strain screening is time-consuming and labor-intensive, and fluorescent proteins provide a breakthrough for high-throughput screening. This review started with basic research work on fluorescent proteins and summarized the applications of fluorescent proteins in microbial strain engineering as well as new screening technologies. This review will provide a basis for applying fluorescent proteins and other luminescent proteins in microbial strain engineering.

参考文献

[1] MORISE H, SHIMOMURA O, JOHNSON F, et al. Intermolecular energy transfer in the bioluminescent system of Aequorea [J]. Biochemistry, 1974, 13(12): 2 656-2 662.
[2] PRASHER D C, ECKENRODE V K, WARD W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein [J]. Gene, 1992, 111(2): 229-233.
[3] MISHIN A S, BELOUSOV V V, SOLNTSEV K M, et al. Novel uses of fluorescent proteins [J]. Current Opinion in Chemical Biology, 2015, 27: 1-9.
[4] HEIM R, TSIEN R Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer [J]. Current Biology, 1996, 6(2): 178-182.
[5] SAITO Y, OIKAWA M, NAKAZAWA H, et al. Machine-learning-guided mutagenesis for directed evolution of fluorescent proteins [J]. ACS Synthetic Biology, 2018, 7(9): 2 014-2 022.
[6] DUDA K, LONOWSKI L A, KOFOED-NIELSEN M, et al. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs [J]. Nucleic Acids Research, 2014, 42(10): e84.
[7] HOJLAND KNUDSEN C, ASGRIMSDOTTIR E S, RAHIMI K, et al. A modified monomeric red fluorescent protein reporter for assessing CRISPR activity [J]. Frontiers in Cell and Developmental Biology, 2018, 6: 54.
[8] KAMIYAMA D, SEKINE S, BARSI-RHYNE B, et al. Versatile protein tagging in cells with split fluorescent protein [J]. Nature Communications, 2016, 7: 11 046.
[9] BIALECKA-FORNAL M, MAKUSHOK T, RAFELSKI S M. A review of fluorescent proteins for use in yeast [J]. Methods in Molecular Biology (Clifton, NJ), 2016, 1 369: 309-346.
[10] CHALFIE M, KAIN S R. Green fluorescent protein: properties, applications, and protocols, second edition [M]. 2nd ed. John Wiley & Sons, Inc., 2005.
[11] ORM M, CUBITT A B, KALLIO K, et al. Crystal structure of the Aequorea victoria green fluorescent protein [J]. Science, 1996, 273(5 280): 1 392-1 395.
[12] YANG F, MOSS L G, PHILLIPS N G. The molecular structure of green fluorescent protein [J]. Nature Biotechnology, 1996, 14(10): 1 246-1 251.
[13] DELAGRAVE S, YOUVAN D C. Searching sequence space to engineer proteins: exponential ensemble mutagenesis [J]. Bio/technology, 1993, 11(13): 1 548-1 552.
[14] 马金石. 绿色荧光蛋白[J]. 化学通报, 2009, 72(3): 243-250.
[15] CODY C W, PRASHER D C, WESTLER W M, et al. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein [J]. Biochemistry, 1993, 32(5): 1 212-1 218.
[16] INOUYE S, TSUJI F I. Aequorea green fluorescent protein [J]. FEBS Letters, 1994, 341(2-3): 277-280.
[17] HEIM R, PRASHER D C, TSIEN R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(26): 12 501-12 504.
[18] CRAGGS T D. Green fluorescent protein: structure, folding and chromophore maturation [J]. Chemical Society Reviews, 2009, 38(10): 2 865-2 875.
[19] 吴沛桥, 巴晓革,胡海,等. 绿色荧光蛋白GFP的研究进展及应用[J]. 生物医学工程研究, 2009, 28(1): 83-86.
[20] CORMACK B P, VALDIVIA R H, FALKOW S. FACS-optimized mutants of the green fluorescent protein (GFP) [J]. Gene, 1996, 173(1): 33-38.
[21] HEIM R, CUBITT A B, TSIEN R Y. Improved green fluorescence [J]. Nature, 1995, 373(6 516): 663-664.
[22] ILAGAN R P, RHOADES E, GRUBER D F, et al. A new bright green-emitting fluorescent protein - engineered monomeric and dimeric forms [J]. FEBS Journal, 2010, 277(8): 1 967-1 978.
[23] DAY R N, DAVIDSON M W. The fluorescent protein palette: Tools for cellular imaging [J]. Chemical Society Reviews, 2009, 38(10): 2 887-2 921.
[24] GRIESBECK O, BAIRD G S, CAMPBELL R E, et al. Reducing the environmental sensitivity of yellow fluorescent protein mechanism and applications [J]. Journal of Biological Chemistry, 2001, 276(31): 29 188-29 194.
[25] 吴瑞, 张树珍. 绿色荧光蛋白及其在植物分子生物学中的应用[J]. 分子植物育种, 2005, 3(2): 240-244.
[26] 汪恒英, 周守标,常志州,等. 绿色荧光蛋白(GFP)研究进展[J]. 生物技术, 2004, 14(3): 228-233.
[27] LLOPIS J, MCCAFFERY J M, MIYAWAKI A, et al. Measurement of cytosolic, mitochondrial, and golgi pH in single living cells with green fluorescent proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6 803-6 808.
[28] JAYARAMAN S, HAGGIE P M, WACHTER R M, et al. Mechanism and cellular applications of a green fluorescent protein-based halide sensor [J]. Journal of Biological Chemistry, 2000, 275(9): 6 047-6 050.
[29] KUNER T, AUGUSTINE G J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons [J]. Neuron, 2000, 27(3): 447-459.
[30] 郝丽梅, 李唐棣,梅兴国. 红色荧光蛋白的研究进展[J]. 国际药学研究杂志, 2006, 33(2): 131-133.
[31] 李义勇, 张亚雄. 基因重组技术在工业微生物菌种选育中应用的研究进展[J]. 中国酿造, 2009, 28(1): 11-14.
[32] 单志新, 林秋雄, 符永恒, 等. 用绿色荧光蛋白(GFP)作为报告分子筛选有效的siRNA [J]. 中国生物化学与分子生物学报, 2007, 23(3): 231-235.
[33] 王弘, 郑文岭, 杨连生, 等. 以绿色荧光蛋白为报告基因的酿酒酵母表达载体的构建 [J]. 广东医学, 2002, 23(12): 1 239-1 240.
[34] 徐明, 桂月晶, 祁伟彦,等. 绿色荧光蛋白基因标记棉花黄萎病菌[J].植物保护, 2013, 39(5):128-133.
[35] 黄洁玉, 张敏. 蛋白酶体抑制剂在肺癌治疗中的研究进展[J]. 中国医药导报, 2016, 13(23):38-41.
[36] 方海同, 胡政, 周光飚. 一种基于绿色荧光蛋白的蛋白酶体抑制剂细胞筛选模型[J]. 生物工程学报, 2009, 25(3):452-456.
[37] PARK J, LEE S, WON N, et al. Single-molecule DNA visualization using AT-specific red and non-specific green DNA-binding fluorescent proteins [J]. The Analyst, 2019,(3).
[38] VENTURA S, NAVARRO S. Screening protein aggregation in cells using fluorescent labels coupled to flow cytometry [J]. Methods in Molecular Biology (Clifton, NJ), 2019, 1873:195-212.
[39] KUCHERAK O A, SHVADCHAK V V, KYRIUKHA Y A, et al. Synthesis of a fluorescent probe for sensing multiple protein states [J]. European Journal of Organic Chemistry, 2018(37): 5 155-5 162.
[40] LIU Y, WOLSTENHOLME C H, CARTER G C, et al. Modulation of fluorescent protein chromophores to detect protein aggregation with turn-on fluorescence [J]. Journal of the American Chemical Society, 2018, 140(24): 7 381-7 384.
[41] SHINODA H, SHANNON M, NAGAI T. Fluorescent proteins for investigating biological events in acidic environments [J]. International Journal of Molecular Sciences, 2018, 19(6): 1 548.
[42] EUM KANG B, LEE S, BAKER B J. Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein [J]. Neuroscience Research, 2018.
[43] MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing [J]. Sensors & Actuators B Chemical, 1990, 1(1): 244-248.
[44] HOSOKAWA M, HOSHINO Y, NISHIKAWA Y, et al. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes [J]. Biosensors & Bioelectronics, 2015, 67: 379-385.
[45] DAGKESAMANSKAYA A, LANGER K, TAUZIN A S, et al. Use of photoswitchable fluorescent proteins for droplet-based microfluidic screening [J]. Journal of Microbiological Methods, 2018, 147: 59-65.
[46] LONGWELL C K, LABANIEH L, COCHRAN J R. High-throughput screening technologies for enzyme engineering [J]. Curr Opin Biotechnol, 2017, 48: 196-202.
[47] SHEMBEKAR N, HU H, EUSTACE D, et al. Single-cell droplet microfluidic screening for antibodies specifically binding to target cells [J]. Cell Reports, 2018, 22(8): 2 206-2 215.
[48] HUANG M, BAI Y, SJOSTROM S L, et al. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast [J]. Proc Natl Acad Sci U S A, 2015, 112(34): 4 689-4 696.
[49] 陈建武, 任红艳,华文君,等. 一种用于提高基因打靶效率的双荧光筛选策略[J]. 中国生物工程杂志, 2017, 37(1): 58-63.
[50] WANG L, JACKSON W C, STEINBACH P A, et al. Evolution of new nonantibody proteins via iterative somatic hypermutation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(48): 16 745-16 749.
[51] 韩李阳. 超分辨成像光转换荧光蛋白探针的筛选及应用[D].长沙: 湖南大学, 2014.
文章导航

/