[1] MORISE H, SHIMOMURA O, JOHNSON F, et al. Intermolecular energy transfer in the bioluminescent system of Aequorea [J]. Biochemistry, 1974, 13(12): 2 656-2 662.
[2] PRASHER D C, ECKENRODE V K, WARD W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein [J]. Gene, 1992, 111(2): 229-233.
[3] MISHIN A S, BELOUSOV V V, SOLNTSEV K M, et al. Novel uses of fluorescent proteins [J]. Current Opinion in Chemical Biology, 2015, 27: 1-9.
[4] HEIM R, TSIEN R Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer [J]. Current Biology, 1996, 6(2): 178-182.
[5] SAITO Y, OIKAWA M, NAKAZAWA H, et al. Machine-learning-guided mutagenesis for directed evolution of fluorescent proteins [J]. ACS Synthetic Biology, 2018, 7(9): 2 014-2 022.
[6] DUDA K, LONOWSKI L A, KOFOED-NIELSEN M, et al. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs [J]. Nucleic Acids Research, 2014, 42(10): e84.
[7] HOJLAND KNUDSEN C, ASGRIMSDOTTIR E S, RAHIMI K, et al. A modified monomeric red fluorescent protein reporter for assessing CRISPR activity [J]. Frontiers in Cell and Developmental Biology, 2018, 6: 54.
[8] KAMIYAMA D, SEKINE S, BARSI-RHYNE B, et al. Versatile protein tagging in cells with split fluorescent protein [J]. Nature Communications, 2016, 7: 11 046.
[9] BIALECKA-FORNAL M, MAKUSHOK T, RAFELSKI S M. A review of fluorescent proteins for use in yeast [J]. Methods in Molecular Biology (Clifton, NJ), 2016, 1 369: 309-346.
[10] CHALFIE M, KAIN S R. Green fluorescent protein: properties, applications, and protocols, second edition [M]. 2nd ed. John Wiley & Sons, Inc., 2005.
[11] ORM M, CUBITT A B, KALLIO K, et al. Crystal structure of the Aequorea victoria green fluorescent protein [J]. Science, 1996, 273(5 280): 1 392-1 395.
[12] YANG F, MOSS L G, PHILLIPS N G. The molecular structure of green fluorescent protein [J]. Nature Biotechnology, 1996, 14(10): 1 246-1 251.
[13] DELAGRAVE S, YOUVAN D C. Searching sequence space to engineer proteins: exponential ensemble mutagenesis [J]. Bio/technology, 1993, 11(13): 1 548-1 552.
[14] 马金石. 绿色荧光蛋白[J]. 化学通报, 2009, 72(3): 243-250.
[15] CODY C W, PRASHER D C, WESTLER W M, et al. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein [J]. Biochemistry, 1993, 32(5): 1 212-1 218.
[16] INOUYE S, TSUJI F I. Aequorea green fluorescent protein [J]. FEBS Letters, 1994, 341(2-3): 277-280.
[17] HEIM R, PRASHER D C, TSIEN R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(26): 12 501-12 504.
[18] CRAGGS T D. Green fluorescent protein: structure, folding and chromophore maturation [J]. Chemical Society Reviews, 2009, 38(10): 2 865-2 875.
[19] 吴沛桥, 巴晓革,胡海,等. 绿色荧光蛋白GFP的研究进展及应用[J]. 生物医学工程研究, 2009, 28(1): 83-86.
[20] CORMACK B P, VALDIVIA R H, FALKOW S. FACS-optimized mutants of the green fluorescent protein (GFP) [J]. Gene, 1996, 173(1): 33-38.
[21] HEIM R, CUBITT A B, TSIEN R Y. Improved green fluorescence [J]. Nature, 1995, 373(6 516): 663-664.
[22] ILAGAN R P, RHOADES E, GRUBER D F, et al. A new bright green-emitting fluorescent protein - engineered monomeric and dimeric forms [J]. FEBS Journal, 2010, 277(8): 1 967-1 978.
[23] DAY R N, DAVIDSON M W. The fluorescent protein palette: Tools for cellular imaging [J]. Chemical Society Reviews, 2009, 38(10): 2 887-2 921.
[24] GRIESBECK O, BAIRD G S, CAMPBELL R E, et al. Reducing the environmental sensitivity of yellow fluorescent protein mechanism and applications [J]. Journal of Biological Chemistry, 2001, 276(31): 29 188-29 194.
[25] 吴瑞, 张树珍. 绿色荧光蛋白及其在植物分子生物学中的应用[J]. 分子植物育种, 2005, 3(2): 240-244.
[26] 汪恒英, 周守标,常志州,等. 绿色荧光蛋白(GFP)研究进展[J]. 生物技术, 2004, 14(3): 228-233.
[27] LLOPIS J, MCCAFFERY J M, MIYAWAKI A, et al. Measurement of cytosolic, mitochondrial, and golgi pH in single living cells with green fluorescent proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6 803-6 808.
[28] JAYARAMAN S, HAGGIE P M, WACHTER R M, et al. Mechanism and cellular applications of a green fluorescent protein-based halide sensor [J]. Journal of Biological Chemistry, 2000, 275(9): 6 047-6 050.
[29] KUNER T, AUGUSTINE G J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons [J]. Neuron, 2000, 27(3): 447-459.
[30] 郝丽梅, 李唐棣,梅兴国. 红色荧光蛋白的研究进展[J]. 国际药学研究杂志, 2006, 33(2): 131-133.
[31] 李义勇, 张亚雄. 基因重组技术在工业微生物菌种选育中应用的研究进展[J]. 中国酿造, 2009, 28(1): 11-14.
[32] 单志新, 林秋雄, 符永恒, 等. 用绿色荧光蛋白(GFP)作为报告分子筛选有效的siRNA [J]. 中国生物化学与分子生物学报, 2007, 23(3): 231-235.
[33] 王弘, 郑文岭, 杨连生, 等. 以绿色荧光蛋白为报告基因的酿酒酵母表达载体的构建 [J]. 广东医学, 2002, 23(12): 1 239-1 240.
[34] 徐明, 桂月晶, 祁伟彦,等. 绿色荧光蛋白基因标记棉花黄萎病菌[J].植物保护, 2013, 39(5):128-133.
[35] 黄洁玉, 张敏. 蛋白酶体抑制剂在肺癌治疗中的研究进展[J]. 中国医药导报, 2016, 13(23):38-41.
[36] 方海同, 胡政, 周光飚. 一种基于绿色荧光蛋白的蛋白酶体抑制剂细胞筛选模型[J]. 生物工程学报, 2009, 25(3):452-456.
[37] PARK J, LEE S, WON N, et al. Single-molecule DNA visualization using AT-specific red and non-specific green DNA-binding fluorescent proteins [J]. The Analyst, 2019,(3).
[38] VENTURA S, NAVARRO S. Screening protein aggregation in cells using fluorescent labels coupled to flow cytometry [J]. Methods in Molecular Biology (Clifton, NJ), 2019, 1873:195-212.
[39] KUCHERAK O A, SHVADCHAK V V, KYRIUKHA Y A, et al. Synthesis of a fluorescent probe for sensing multiple protein states [J]. European Journal of Organic Chemistry, 2018(37): 5 155-5 162.
[40] LIU Y, WOLSTENHOLME C H, CARTER G C, et al. Modulation of fluorescent protein chromophores to detect protein aggregation with turn-on fluorescence [J]. Journal of the American Chemical Society, 2018, 140(24): 7 381-7 384.
[41] SHINODA H, SHANNON M, NAGAI T. Fluorescent proteins for investigating biological events in acidic environments [J]. International Journal of Molecular Sciences, 2018, 19(6): 1 548.
[42] EUM KANG B, LEE S, BAKER B J. Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein [J]. Neuroscience Research, 2018.
[43] MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing [J]. Sensors & Actuators B Chemical, 1990, 1(1): 244-248.
[44] HOSOKAWA M, HOSHINO Y, NISHIKAWA Y, et al. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes [J]. Biosensors & Bioelectronics, 2015, 67: 379-385.
[45] DAGKESAMANSKAYA A, LANGER K, TAUZIN A S, et al. Use of photoswitchable fluorescent proteins for droplet-based microfluidic screening [J]. Journal of Microbiological Methods, 2018, 147: 59-65.
[46] LONGWELL C K, LABANIEH L, COCHRAN J R. High-throughput screening technologies for enzyme engineering [J]. Curr Opin Biotechnol, 2017, 48: 196-202.
[47] SHEMBEKAR N, HU H, EUSTACE D, et al. Single-cell droplet microfluidic screening for antibodies specifically binding to target cells [J]. Cell Reports, 2018, 22(8): 2 206-2 215.
[48] HUANG M, BAI Y, SJOSTROM S L, et al. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast [J]. Proc Natl Acad Sci U S A, 2015, 112(34): 4 689-4 696.
[49] 陈建武, 任红艳,华文君,等. 一种用于提高基因打靶效率的双荧光筛选策略[J]. 中国生物工程杂志, 2017, 37(1): 58-63.
[50] WANG L, JACKSON W C, STEINBACH P A, et al. Evolution of new nonantibody proteins via iterative somatic hypermutation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(48): 16 745-16 749.
[51] 韩李阳. 超分辨成像光转换荧光蛋白探针的筛选及应用[D].长沙: 湖南大学, 2014.