研究了Lg-Flo1蛋白N端的诱导表达条件及与甘露糖的结合活性。将构建的巴氏酵母Lg-FLO1基因N端序列的重组表达载体pETFL1进行双酶切验证,转化大肠杆菌BL21(DE3),通过菌落PCR鉴定阳性转化子,并进行诱导表达,利用SDS-PAGE检测不同诱导条件对目的蛋白N-Lg-Flo1表达的影响,并对目的蛋白进行变性溶解、纯化、复性及活性测定。结果表明,酶切证实重组表达载体含有N-Lg-FLO1基因片段;在LB培养基中的表达量高于TB培养基;和IPTG相比,乳糖诱导同样可以表达含量较高的目的蛋白且成本较低。以乳糖作为诱导剂,终质量浓度为0.2 g/L,诱导温度37 ℃,诱导6 h,目的蛋白的表达量均高于30%;荧光光谱分析表明,复性后的N-Lg-Flo1蛋白具有与甘露糖结合的活性。该研究为大规模生产絮凝蛋白并以此为原料制备糖的特异性吸附剂奠定了基础。
The induction condition and binding activity of N-terminal of Lg-Flo1 protein with mannose were studied. The recombinant expression vector pETFL1 with N-terminal sequence of Lg-FLO1 gene from Pasteurella pastoris was digested, identified and transformed into Escherichia. coli BL21 (DE3). The positive transformants were identified and Lg-FLO1 gene was expressed and the effects of induction condition on expressing target protein were studied, followed by determining the activity of target protein. The expression level of N-lg-Flo1 protein in LB medium was higher than that in TB medium. Compared with IPTG induction, the target protein was expressed at a higher level with lactose. The highest expression level of the target protein was obtained after 6 h induction with 0.2 g/L lactose at 37℃. Besides, the fluorescence spectrum analysis revealed mannose-binding activity of the renatured N-Lg-Flo1 protein. This research establishes a base for large-scale production of flocculant proteins that can be used as raw materials to prepare specific adsorbents for carbohydrates.
[1] GOOSSENS K V Y, DE GREVE H, WILLAERT R G. Cloning, expression, and purification of the n-terminal domain of the flo1 flocculation protein from saccharomyces cerevisiae in pichia pastoris[J]. Protein Expression and Purification, 2013, 88(1), 114-119.
[2] IELAS I F S, GOYAL P, SLEUTEL M, et al. The mannose-specific lectin domains of Flo1p from Saccharomyces cerevisiae and Lg-Flo1p from S. pastorianus: Crystallization and preliminary X-ray diffraction analysis of the adhesin-carbohydrate complexes[J]. Acta Crystallographica Section F:Structural Biology and Crystallization Communications, 2013, 69(7):779-782.
[3] KEMP B, ALEXANDRE H, ROBILLARD B, et al. Effect of production phase on bottle-fermented sparkling wine quality[J]. Journal of Agricultural and Food Chemistry, 2015, 63(1):19-38.
[4] BORRULL A, POBLET M, ROZS N. New insights into the capacity of commercial wine yeasts to grow on sparkling wine media. Factor screening for improving wine yeast selection[J]. Food Microbiology, 2015, 48:41-48.
[5] 刘楠, 王冬立,何秀萍,等. 酵母新絮凝特性的研究进展及应用展望[J]. 食品与发酵工业, 2007, 33(1):89-91.
[6] GOOSSENS K V, WILLAERT R G. Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae[J]. Biotechnol Lett, 2010, 32: 1 571-1 585.
[7] RADHAKRISHNAN A N P, MARQUES M P C, DAVIES M J, et al. Flocculation on a chip: A novel screening approach to determine floc growth rates and select flocculating agents[J]. Lab on a Chip, 2018, 18(4): 585-594.
[8] DIGIANVITO P, TESNIRE C, SUZZI G, et al. FLO5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain[J]. Scientific Reports, 2017, 7(1): 10 786.
[9] 郭立芸, 谢鑫,梁云. 应用絮凝基因表达量分析技术评价酵母菌株的絮凝性[J]. 食品与发酵工业, 2018, 44(5): 70-75.
[10] STRATFORD M, ASSINDER S. Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure[J]. Yeast, 1991, 7(6):559-574.
[11] VEELDERS M, BRU~CKNER S, OTT D, et al. Structural basis of flocculin-mediated social behavior in yeast[J]. Proceedings of the national Academy of Scieuces,2010, 107(52): 22 511-22 516.
[12] SATO M, MAEBA H, WATARI J, et al. Analysis of an inactivated Lg-FLO1 gene present in bottom-fermenting yeast[J]. Journal of Bioscience and Bioengineering, 2002, 93(4): 395-398.
[13] GOOSSENS K V Y, WILLAERT R G. The n-terminal domain of the Flo11 protein from Saccharomyces cerevisiae is an adhesin without mannose-binding activity[J]. FEMS Yeast Research, 2011, 12(1): 78-87.
[14] GROES M, TEILUM K, OLESEN K, et al. Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding domain of flocculin, a cell-adhesion molecule from Saccharomyces carlsbergensis[J]. Acta Crystallographica, 2002, 58(12): 2 135-2 137.
[15] 汪天虹. 分子生物学实验[M]. 北京:北京大学出版社, 2016.
[16] 陈钧辉. 生物化学实验[M]. 北京:科学出版社, 2015.
[17] 王俊雄, 关怡新,姚善泾. 重组瑞替普酶包涵体制备及其体外复性[J]. 化工学报, 2015, 66(2):709-716.
[18] 郭帅, 陈梦仟,朱新术,等. 大肠杆菌表达的重组琼胶酶包涵体的纯化与复性条件研究[J]. 基因组学与应用生物学, 2018, 37(3):1 197-1 202.
[19] 许崇利. 乳糖诱导剂及培养条件对C型产气荚膜梭菌β2毒素基因表达影响[J]. 基因组学与应用生物学, 2015, 34(1):112-116.
[20] KOBAYASHI O, HAYASHI N, KUROKI R, et al. Region of Flo1 proteins responsible for sugar recognition[J]. Journal of Bacteriology, 1998, 180(24): 6 503-6 510.
[21] 朱运平, 江正强,李里特. 乳糖诱导极耐高温木聚糖酶基因B在大肠杆菌中的表达[J]. 食品与发酵工业, 2005, 31(4): 37-41.
[22] 汪明明, 杨瑞金,华霄,等. 乳糖诱导纤维二糖差向异构酶的表达及热处理纯化[J]. 食品与发酵工业, 2015, 41(3): 1-7.