[1] EFFIONG G S, EBONG P E, EYONG E U, et al. Amelioration of chloramphenicol induced toxicity in rats by coconut water[J]. Journal of Applied Sciences Research, 2010,6(4):331-335.
[2] DUAN Y, WANG L, GAO Z, et al. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR[J]. Talanta, 2017, 165:671-676.
[3] 陶晓奇. 动物性食品中酰胺醇类残留化学发光检测技术研究[D]. 北京:中国农业大学, 2014.
[4] 中华人民共和国农业部. 农业部第235 号公告 动物性食品中兽药最高残留限量[S]. 北京:中国标准出版社,2002.
[5] 符靖雯, 黄子敬,陈孟君,等. 气相色谱-电子捕获检测器快速测定水产品中多种农药及兽药残留[J]. 理化检验(化学分册), 2018, 54(9):29-33.
[6] 肖婉娜, 何敏,陈怡佳. 高效液相色谱法检测蜂蜜中的氯霉素[J]. 农产品加工, 2018(6):56-58.
[7] LIU T, XIE J, ZHAO J, et al. Magnetic chitosan nanocomposite used as cleanup material to detect chloramphenicol in milk by GC-MS[J]. Food Analytical Methods, 2014, 7(4):814-819.
[8] 张燕, 徐幸,舒平, 等. 高效液相色谱-质谱联用法测定乳及乳制品中氯霉素类药物残留量[J]. 食品安全质量检测学报, 2015,6(2):710-717.
[9] 王安伟, 刘天密,覃锐, 等. 水产品中氯霉素残留检测方法研究进展[J]. 食品安全质量检测学报, 2017,8(11):179-184.
[10] SARWER UG, RONY M M H,SHARMIN M S S, et.al. ELISA validation and determination of cut-off level for chloramphenicol (CAP) residues in shrimp and fish[J]. Our Nature,2017,15(1-2):13-18.
[11] TAO X, JIANG H, ZHU J, et al. Detection of ultratrace chloramphenicol residues in milk and chicken muscle samples using a chemiluminescent ELISA[J]. Analytical Letters, 2012, 45(10):1 254-1 263.
[12] 吴丽媛. 动物源性食品氯霉素类残留检测方法概述[J]. 中国畜禽种业, 2014, 10(4):43-44.
[13] ZHANG Z, LIU J F, YAO Y, et al. A competitive dual-label time-resolved fluoroimmunoassay for the simultaneous determination of chloramphenicol and ractopamine in swine tissue[J]. Chinese Science Bulletin, 2011, 56(15): 1 543-1 547.
[14] 刘文珍, 王振国,田飞焱, 等. 胶体金免疫层析法快速检测水产品中氯霉素的应用与验证[J]. 江西水产科技, 2016(5):23-27.
[15] 段烨. 氯霉素核酸适体的筛选及基于核酸适体生物传感器的建立[D]. 北京:北京化工大学, 2016.
[16] DUAN Y, GAO Z, WANG L, et al. Selection and identification of chloramphenicol-specific DNA aptamers by Mag-SELEX[J]. Applied Biochemistry and Biotechnology, 2016, 180(8):1 644-1 656.
[17] OHON Y, MAEHASHI K, MARSUMOTO K. Label-free biosensors based on aptamer-modified graphene field-effect transistors[J]. Journal of the American Chemical Society, 2010, 132(51): 18 012-18 013.
[18] ZHANG S, MA L, MA K, et al. Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide[J]. ACS omega, 2018, 3(10): 12 886-12 892.
[19] GAO H, GAN N, PAN D, et al. A sensitive colorimetric aptasensor for chloramphenicol detection in fish and pork based on the amplification of a nano-peroxidase-polymer[J]. Analytical Methods, 2015, 7(16): 6 528-6 536.
[20] LU Z, CHEN X, HU W. A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection[J]. Sensors and Actuators B: Chemical, 2017, 246: 61-67.
[21] KIM S, LEE H J.Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay[J]. Analytical chemistry, 2017, 89(12): 6 624-6 630.
[22] JAYASENA S D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics[J]. Clin Chem,1999, 45(9):1 628-1 650.
[23] SONG S, WANG L, LI J, et al. Aptamer-based biosensors[J]. TrAC Trends in Analytical Chemistry, 2008, 27(2):108-117.
[24] HERMANN T. Adaptive recognition by nucleic acid aptamers[J]. Science, 2000, 287(5 454):820-825.
[25] MONTAZER M, PARVNZADEH M, KIUMARSI A. Colorimetric properties of wool dyed with natural dyes after treatment with ammonia[J]. Coloration Technology, 2006, 120(4):161-166.
[26] YE BF, ZHAO Y J, CHENG Y, et al. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions[J]. Nanoscale, 2012, 4(19):5 998-6 003.
[27] XIE Y, HUANG Y, TANG D, et al. A competitive colorimetric chloramphenicol assay based on the non-cross-linking deaggregation of gold nanoparticles coated with a polyadenine-modified aptamer[J]. Microchimica Acta, 2018, 185(12):534.
[28] YAN C, ZHANG J, YAO L, et al. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food[J]. Food Chemistry, 2018,260: 208-212.
[29] HUANG W, ZHANG H, LAI G, et al. Sensitive and rapid aptasensing of chloramphenicol by colorimetric signal transduction with a DNAzyme-functionalized gold nanoprobe. [J] Food Chemistry, 2019, 270:287-292.
[30] ZHANG X, HUANG P J J, SERVOS M R, et al. Effects of polyethylene glycol on DNA adsorption andHybridization on gold nanoparticles and graphene oxide[J]. Langmuir, 2012, 28(40):14 330-14 337.
[31] JAVIDI M, HOUSAINDOKHT, MR, et al. Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples[J]. Analytical Chimica Acta, 2018, 1039:116-123.
[32] ROSSINI E L, MILANI M I, PEZZA H R. Green synthesis of fluorescent carbon dots for determination of glucose in biofluids using a paper platform[J]. Talanta, 2019, 201: 503-510.
[33] 谷巧荣. 荧光分析法检测磷脂酶C及DnaseⅠ活性的研究[D].西安:陕西师范大学,2017.
[34] LEE J B, KURODA S, SHICHINOHE H, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice[J]. Neuropathology, 2003, 23(3): 169-180.
[35] ALIBOLANDI M, HADIZADEH F, VAJHEDIN F, et al. Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet[J]. Materials Science and Engineering: C, 2015, 48:611-619.
[36] MIAO Y, GAN N, LI T, et al. An ultrasensitive fluorescence aptasensor for chloramphenicol based on FRET between quantum dots as donor and the magnetic SiO2@ Au NPs probe as acceptor with exonuclease-assisted target recycling[J]. Sensors and Actuators B: Chemical, 2016, 222: 1 066-1 072.
[37] MIAO Y,REN H X,GAN N, et al. A homogeneous and “off-on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes[J]. Analytica Chimica Acta, 2016,929:49-55.
[38] WU S, ZHANG H, SHI Z, et al. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles[J]. Food Control, 2015, 50:597-604.
[39] HAO L DUAN N, WU S, et al. Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles[J]. Analytical and Bioanalytical Chemistry, 2015, 407(26):7 907-7 915.
[40] 于秀霞. 化学发光功能化纳米材料在新型生物传感器中的应用[D]. 合肥:中国科学技术大学,2014.
[41] YAN W, YANG L, ZHUANG H, et al. Engineered “hot” core-shell nanostructures for patterned detection of chloramphenicol[J]. Biosensors & Bioelectronics, 2015,78:67-72.
[42] YANG K, HU Y, DONG N. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol[J]. Biosensors and Bioelectronics, 2016, 80: 373-377.
[43] CHEN M, GAN N,ZHOU Y, et al. A novel aptamer- metal ions- nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification[J]. Sensors and Actuators, B: Chemical, 2017, 242:1 201-1 209.
[44] FENG X, GAN N, ZHANG H, et al. A novel “dual-potential” electrochemiluminescence aptasensor array using CdS quantum dots and luminol-gold nanoparticles as labels for simultaneous detection of malachite green and chloramphenicol[J]. Biosensors and Bioelectronics, 2015, 74:587-593.
[45] ZHOU L, GAN N, ZHOU Y, et al. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes[J]. Talanta, 2017, 167(Complete):544-549.
[46] ZHOU L, GAN N, HU F, et al. Microchip electrophoresis array-based aptasensor for multiplex antibiotic detection using functionalized magnetic beads and polymerase chain reaction amplification[J]. Sensors and Actuators B: Chemical, 2018,263:568-574.
[47] 赵帅. 基于核酸适配体的侧流层析试纸条法快速检测氯霉素残留[D]. 北京:北京化工大学,2018.
[48] BERLINA A N, NADEZHDA A, TERANOVA N A,et al. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk[J]. Analytical and Bioanalytical Chemistry, 2013, 405(14): 4 997-5 000.
[49] SUN Y, LU J. Chemiluminescence-based aptasensors for various target analytes[J]. Luminescence, 2018,33(18):1 298-1 305.
[50] MEHLHORN A, RAHIMI P,JOSEPH Y. Aptamer-based biosensors for antibiotic detection: A review[J]. Biosensors, 2018, 8(2):54-62.