综述与专题评论

气味指纹技术在水产品品质评价中的应用研究进展

  • 孙晓红 ,
  • 刘军军 ,
  • 蓝蔚青 ,
  • 孙雨晴 ,
  • 谢晶
展开
  • 1(上海海洋大学 食品学院,上海,201306)
    2(上海水产品加工及贮藏工程技术研究中心,食品科学与工程国家级实验教学示范中心(上海海洋大学),上海,201306)
博士,副教授(蓝蔚青高级工程师和谢晶教授为共同通讯作者,E-mail:wqlan@shou.edu.cn;jxie@shou.edu.cn)

收稿日期: 2019-09-24

  网络出版日期: 2020-04-10

基金资助

2019年上海市科技兴农重点攻关项目(2019-02-08-00-10-F01149);现代农业产业技术体系建设专项(CARS-47);上海水产品加工及贮藏工程技术研究中心能力提升项目(19DZ2284000)

Research progress on the application of odor fingerprint technology in qualityevaluation of aquatic products

  • SUN Xiaohong ,
  • LIU Junjun ,
  • LAN Weiqing ,
  • SUN Yuqing ,
  • XIE Jing
Expand
  • 1(Shanghai Ocean University College of Food Science and Technology,Shanghai 201306,China)
    2(Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center National Experimental TeachingDemonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China)

Received date: 2019-09-24

  Online published: 2020-04-10

摘要

气味指纹技术是一种将气体传感设备与多元统计方法相结合,用于分析食品中挥发性风味物质,表征样品信息,并对产品品质予以判断的检测技术。该技术具有无损检测、快速简便、灵活准确、结果客观等优点,现已广泛应用于水产品品质的分析检测中。该文在比较传统水产品品质评价方法主要优缺点的基础上,综述了电子鼻、电子舌、气相色谱-质谱联用等技术在水产品新鲜度鉴别、货架期预测与品质评价中的应用研究进展。文中提出将不同检测技术联合使用以克服单一检测分析的不足之处,阐明将气味指纹技术结合新型智能技术,利用其分析结果对水产品挥发性成分予以调控,提升其综合品质,扩大该技术在水产品品质评价领域中的推广应用。

本文引用格式

孙晓红 , 刘军军 , 蓝蔚青 , 孙雨晴 , 谢晶 . 气味指纹技术在水产品品质评价中的应用研究进展[J]. 食品与发酵工业, 2020 , 46(5) : 314 -320 . DOI: 10.13995/j.cnki.11-1802/ts.022353

Abstract

Odor fingerprint technology is a kind of detection technology, which combines gas sensing equipment and multivariate statistical methods to analyze the volatile flavor substances in foods, characterize the sample information and judge the quality of products. This technology has many advantages, such as non-destructive testing, fast detection and convenient, flexible and accurate, objective results and so on. Based on the comparison of main advantages and disadvantages of traditional methods for aquatic product quality evaluation, the application of electronic nose, electronic tongue and gas chromatography-mass spectrometry in the freshness identification of an aquatic product, shelf-life prediction and quality evaluation, were reviewed respectively. In order to overcome the shortcomings of single detection and analysis, it is proposed to combine different detection technologies to clarify the combination of odor fingerprint technology and new intelligent technology, use the analysis results to regulate and control the volatile components of aquatic products, improve their comprehensive quality, expand the application of this technology in the field of aquatic product quality evaluation.

参考文献

[1] 刘纯友, 李子娟, 殷朝敏, 等. 水产品挥发性风味成分提取与检测方法研究进展[J]. 广州化工, 2017, 45(6): 30-33.
[2] 刘树萍, 方伟佳. 气味指纹图谱技术在肉制品品质检测中的应用[J]. 中国调味品, 2019, 44(1): 147-149.
[3] 何燕富, 黄卉, 李来好, 等. 低温贮藏的鱼肉品质变化及其影响因素的研究进展[J]. 大连海洋大学学报, 2017, 32(2): 242-247.
[4] 聂蓉, 黄杰. 基于仿生嗅觉的气味指纹检测与识别方法研究[J]. 河南科学, 2019(2): 183-187.
[5] 朱丽敏, 倪元颖, VENZAL S, 等. 气味指纹分析技术在食品质控和风味研究的应用[J]. 农产品加工(学刊), 2005(Z2): 72-76.
[6] 沈秋霞, 王晓君, 卢朝婷, 等. 基于电子鼻技术对真空包装三文鱼片的新鲜度评价[J]. 食品与发酵工业, 2018, 44(10): 241-247.
[7] 王阳, 黄磊. 水产品新鲜度评价方法研究综述[J]. 安徽农学通报, 2016, 22(18): 106-107.
[8] ZHU W, LUAN H, BU Y, et al. Flavor characteristics of shrimp sauces with different fermentation and storage time[J]. Lebensmittel-Wissenschaftund-Technologie/Food Science and Technology, 2019, 110: 142-151.
[9] 荣建华, 熊诗, 张亮子, 等. 基于电子鼻和SPME-GC-MS联用分析脆肉鲩鱼肉的挥发性风味成分[J]. 食品科学, 2015, 36(10): 124-128.
[10] SHAO C, ZHENG H, ZHOU Z, et al. Ridgetail white prawn (Exopalaemon carinicauda) K value predicting method by using electronic nose combined with non-linear data analysis model[J]. Food Analytical Methods, 2018, 11(11): 3 121-3 129.
[11] 王祖忠, 周君, 张凌芷, 等. 8种植物油气味指纹模型的建立[J]. 中国油脂, 2017, 42(2): 76-80.
[12] 肖蕾, 蓝蔚青, 孙晓红, 等. 金枪鱼常用保鲜方式及品质检测技术研究进展[J]. 包装工程, 2017, 38(5): 115-120.
[13] 吴楠京, 贾文珅, 马洁, 等. 仿生嗅觉技术在微生物代谢产物气味检测中的应用研究进展[J]. 分析试验室, 2018, 37(3): 366-372.
[14] LI P, REN Z H, SHAO K Y, et al. Research on distinguishing fish meal quality using different characteristic parameters based on electronic nose technology[J]. Sensors (Basel, Switzerland), 2019, 19(9): 2 146-2 160.
[15] ZHENG H N, WANG S Y, PING X Y, et al. Study of spinyhead croaker (Collichthys lucidus) fat content forecasting model based on electronic nose and non-linear data resolution model[J]. Food Analytical Methods, 2019, 12(9): 1 927-1 937.
[16] 黄嘉丽, 黄宝华, 卢宇靖, 等. 电子舌检测技术及其在食品领域的应用研究进展[J]. 中国调味品, 2019, 44(5): 189-193.
[17] 郑舒文, 陈卫华. 基于电子鼻和电子舌技术的鳕鱼鲜度评定[J]. 中国调味品, 2019, 44(5): 164-169.
[18] HAN F, HUANG X, TEYE E, et al. A nondestructive method for fish freshness determination with electronic tongue combined with linear and non-linear multivariate algorithms[J]. Journal of Food Science, 2014, 32(6): 532-537.
[19] 南洋, 杜悦, 李长兴. 气相色谱-质谱法测定食品包装材料中的VOCs[J]. 包装工程, 2018, 39(1): 58-63.
[20] TANG Y, YE L, ZHANG D, et al. Characterization of a fatty acid binding protein from the swimming crab Portunus trituberculatus and its effects on the composition of fatty acids in different tissues[J]. Invertebrate Reproduction & Development, 2017, 62(1): 1-8.
[21] LALITHAPRIYA U, MARIAJENITA P, RENUKA V, et al. Investigation of natural extracts and sodium bisulfite impact on thermal signals and physicochemical compositions of Litopenaeus vannamei during chilled storage[J]. Journal of Aquatic Food Product Technology, 2019, 28(6): 609-623.
[22] SOLAESA A G, FERNANDES J O, SANZ M T, et al. Green determination of brominated flame retardants and organochloride pollutants in fish oils by vortex assisted liquid-liquid microextraction and gas chromatography-tandem mass spectrometry[J]. Talanta, 2019, 195: 251-257.
[23] MISHRA P, GONG Z, KELLY B C. Assessing biological effects of fluoxetine in developing zebrafish embryos using gas chromatography-mass spectrometry based metabolomics[J]. Chemosphere, 2017, 188: 157-167.
[24] 余桂平, 陈斌, 朱建锡, 等. 食品检测中电子鼻技术的相关应用探讨[J]. 农业开发与装备, 2019(2): 145-154.
[25] LIMBO S, SINELLI N, TORRI L, et al. Freshness decay and shelf life predictive modelling of European sea bass (Dicentrarchus labrax) applying chemical methods and electronic nose[J]. LWT-Food Science and Technology, 2009, 42(5): 984.
[26] HUANG X H, ZHENG X, CHEN Z H, et al. Fresh and grilled eel volatile fingerprinting by e-Nose, GC-O, GC-MS and GC×GC-QTOF combined with purge and trap and solvent-assisted flavor evaporation[J]. Food Research International, 2019, 115: 32-43.
[27] KANAVOURAS A, HERNANDEZ R J. The analysis of volatiles from thermally oxidized virgin olive oil using dynamic sorption-thermal desorption and solid phase micro-extraction techniques[J]. International Journal of Food Science & Technology, 2010, 41(7): 743-750.
[28] SARNOSKI P J, O’KEEFE S F, JAHNCKE M L, et al. Analysis of crab meat volatiles as possible spoilage indicators for blue crab (Callinectes sapidus) meat by gas chromatography-mass spectrometry[J]. Food Chemistry, 2017, 122(3): 930-935.
[29] 张娅, 金凤, 郭子璇, 等. 气相色谱-质谱联用鉴定基于水酶法制备的虹鳟鱼骨油组分[J]. 分析化学, 2017, 45(7): 1 045-1 051.
[30] LIANG X, FENG T T, WU J H, et al. Vortex-assisted liquid-liquid micro-extraction followed by head space solid phase micro-extraction for the determination of eugenol in fish using GC-MS[J]. Food Analytical Methods, 2018, 11(3): 790-736.
[31] RASCON A J, AZZOUZ A, BALLESTEROS E. Trace level determination of polycyclic aromatic hydrocarbons in raw and processed meat and fish products from European markets by GC-MS[J]. Food Control, 2019, 101: 198-208.
[32] SHILPI C, RIDLEY L, MURPHY W R, et al. Quantitative analysis of polycyclic aromatic hydrocarbons at part per billion levels in fish oil by headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS)[J]. Journal of Chromatographic Science, 2019, 57(1): 87-92.
[33] SONG H L, LIU J B. GC-O-MS technique and its applications in food flavor analysis[J]. Food Research International (Ottawa, Ont.), 2018, 114: 187-198.
[34] FRANK D, POOLE S, KIRCHHOFF S, et al. Investigation of sensory and volatile characteristics of farmed and wild barramundi (Lates calcarifer) using gas chromatography-olfactometry mass spectrometry and descriptive sensory analysis[J]. Journal of Agricultural and Food Chemistry, 2009, 57(21): 10 302-10 312.
[35] 王锡昌, 吴娜, 顾赛麒, 等. MMSE-GC-MS/GC-O法鉴定熟制阳澄湖大闸蟹关键嗅感物质[J]. 现代食品科技, 2014, 30(4): 245-254.
[36] 李楠. 三种GC-O方法对蒸制雄性中华绒螯蟹性腺主体呈香物质的鉴定//中国水产学会. 2015年中国水产学会学术年会论文摘要集[C]. 2015: 1
[37] FAN Y, YIN L A, XUE Y, et al. Analyzing the flavor compounds in chinese traditional fermented shrimp pastes by HS-SPME-GC/MS and electronic nose[J]. Journal of Ocean University of China, 2017, 16(2): 311-318.
[38] WU N, WANG X C. Identification of important odorants derived from phosphatidylethanolamine species in steamed male Eriocheir sinensis hepatopancreas in model systems[J]. Food Chemistry, 2019, 286: 491-499.
[39] 张玉华, 孟一. 肉类品质无损检测技术研究现状与发展趋势[J]. 食品工业科技, 2012, 33(12): 392-395.
[40] 付雪艳, 吴娜, 袁凯, 等. 固相萃取整体捕集剂-气相色谱-质谱联用仪结合电子鼻技术对中华绒螯蟹关键脂质热氧化体系的构建[J]. 食品与发酵工业, 2018, 44(9): 254-261.
[41] ZHANG J H, CAO J, PEI Z S, et al. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS[J]. Food Research International, 2019, 123: 217-225.
[42] LIU Q Y, GUO Y M, SUN X M, et al. Determination of 15 polycyclic aromatic hydrocarbons in aquatic products by solid-phase extraction and GC-MS[J]. Journal of Separation Science, 2018, 41(10): 2 188-2 196.
[43] WU N, WANG X C. Comparison of gender differences in nutritional value and key odor profile of hepatopancreas of chinese mitten crab (Eriocheir sinensis)[J]. Journal of Food Science, 2017, 82(2): 536-544.
[44] 邢梦珂, 孙柯, 赵楠, 等. 基于电子鼻技术的草莓损伤检测系统的开发[J]. 南京农业大学学报, 2018, 41(3): 555-561.
[45] 万赐晖, 贾文珅, 王纪华, 等. 基于人工神经网络算法的电子鼻系统在食品无损检测中的应用[J]. 食品与机械, 2016, 32(10): 221-225.
[46] LIU Q Y, GUO Y M, SUN X M, et al. Determination of 15 polycyclic aromatic hydrocarbons in aquatic products by solid-phase extraction and GC-MS[J]. Journal of Separation Science, 2018, 41(10): 2 188-2 196.
[47] 朱培逸, 徐本连, 鲁明丽, 等. 基于电子鼻和改进无监督鉴别投影算法的大闸蟹新鲜度识别方法[J]. 食品科学, 2017, 38(18): 310-316.
[48] VAJDI M, VARIDI M J, VARIDI M, et al. Using electronic nose to recognize fish spoilage with an optimum classifier[J]. Journal of Food Measurement and Characterization, 2019, 13(2): 1-13.
文章导航

/