以暗纹东方鲀为研究对象,实验研究了微冻(-3 ℃)、冰温(-1 ℃)、冷藏(4 ℃)、10 ℃和15 ℃条件下鱼肌肉中水分迁移、质构(texture profile analysis,TPA)和色泽的变化规律,以及水分迁移对鱼肉质构和色泽的影响,同时,构建了货架期预测模型。研究结果显示,不同贮藏温度下鱼肉的结合水、不易流动水和自由水的相对含量(pT21,pT22,pT23)随贮藏时间分别呈上升、上升后下降和下降后上升的变化趋势,鱼肌肉中结合水和自由水的弛豫时间(T21,T23)波动上升,T22对应的不易流动水先上升后下降。总体上,不同温度贮藏组的不易流动水随着贮藏时间向自由水的迁移均较明显。不同温度组pT21和T21对应的结合水对鱼肉的弹性、硬度和白度有较大影响。相关性拟合结果显示菌落总数(total viable count,TVC)、挥发性盐基氮(total volatile base nitrogen,TVB-N)与感官评分的相关性最高(|r|> 0.95,R2> 0.90),并以此建立了货架期预测模型;验证结果表明,结合Arrhenius方程构建的TVC和TVB-N的时间-温度-品质的动力学模型能较准确地预测-3~15 ℃贮藏暗纹东方鲀的货架期。
The effects of micro-frozen (-3 ℃), ice temperature (-1 ℃), cold storage (4 ℃), 10 and 15 ℃ on the moisture migration of Takifugu obscures were analyzed. And the texture and color were also explored. The changes were investigated to study the effects of moisture migration on fish texture and color. Furthermore, the shelf-life prediction models were established. The results showed that the relative contents of immobilized water, non-flowing water and free water (pT21, pT22, pT23) of fish meat followed the trends that increased, first increased then decreased and increased after decreased at different storage temperatures, respectively. The relaxation time of immobilized water and free water (T21, T23) fluctuated increased while relaxation time of non-flowing water (T22) increased first then decreased in fish muscles. In general, the migration of non-mobile water to free water was evident in different temperature storage groups. Combined water content (pT21) and water activity (T21) had a great effect on the hardness, elasticity and whiteness of fish. According to the correlation linear fitting analysis, the correlation of TVB-N, TVC with sensory scores were the highest and selected as to build the shelf-life model (|r|> 0.95, R2> 0.90). Fitting analysis results showed that the time-temperature-quality kinetic model of TVC and TVB-N based on Arrhenius equation could accurately predict the shelf life of Takifugu obscurus at the range of -3~15 ℃.
[1] 黄玉林, 王文利, 刘源, 等. 我国养殖河鲀(业)发展现状及研究进展[J]. 中国食品学报. 2018, 18(1) : 217-224.
[2] 周然, 刘源, 谢晶, 等. 电解水对冷藏河鲀鱼肉质构及品质变化的影响[J]. 农业工程学报, 2011, 27(10): 365-369.
[3] 张迪, 杨正勇, 张英丽. 中国河鲀养殖产业发展现状与发展对策[J]. 科学养鱼, 2017(12): 1-3.
[4] 励建荣. 海水鱼类腐败机制及其保鲜技术研究进展[J]. 中国食品学报, 2018, 18(5): 6-17.
[5] BERTRAM H C, KOHLER A, BOCKER U, et al. Heat-Induced changes in myofibrillar protein structures and myowater of two pork qualities. A combined FT-IR spectroscopy and low-field NMR relaxometry study[J]. Journal of Agricultural and Food Chemistry, 2006, 54 (5) : 1 740-1 746.
[6] HE S, ELFALLEH W, SUN X, et al. Quality and sensory characteristics of volutharpa ampullacea perryi (False Abalone) meat during the boiling cooking[J]. Journal of Aquatic Food Product Technology, 2019, 12(3): 1-14.
[7] 朱丹实, 王立娜, 吴晓菲, 等. 冰温及冷藏对鲤鱼水分迁移及质构的影响[J]. 中国食品学报, 2017, 17(10): 152-159.
[8] 雷志方, 谢晶. 金枪鱼基于理化指标的货架期预测模型的建立[J]. 食品与发酵工业, 2015, 41(11): 185-191.
[9] 马妍, 谢晶, 周然, 等. 暗纹东方鲀在不同冻藏温度下品质变化的动力学研究[J]. 中国农业大学学报, 2012, 17(1): 138-142.
[10] 胡玥, 杨水兵, 余海霞, 等. 微冻保鲜方法对带鱼品质及组织结构的影响[J]. 食品科学, 2016, 37(18): 290-297.
[11] WANG S, XIANG W, FAN H Z, et al. Study on the mobility of water and its correlation with the spoilage process of salmon (Salmo solar) stored at 0 and 4 °C by low-field nuclear magnetic resonance (LF NMR 1 H)[J]. Journal of Food Science & Technology, 2018, 55(1): 173-182.
[12] DOLORES R, CAMBERO M, ORDONEZ J A, et al.Rheological behaviour of commercial cooked meat products evaluated by tensile test and texture prole analysis (TPA) [J]. Meat Science, 2014, 98 (2) : 310-315.
[13] ZHU S, RAMASWAMY H S, SIMPSON B K.Effect of highpressure versus conventional thawing on color, drip loss and texture of Atlantic salmon frozen by different methods[J]. Food Science and Technology, 2004, 37 (3) : 291-299.
[14] KILINCCEKER O, DOGAN S, KUCUKONER E.Effect of edible coatings on the quality of frozen fish fillets[J]. LWT-Food Science and Technology, 2009, 42 (4) : 868-873.
[15] YU D, REGENSTEIN J M, ZANG J, et al. Inhibition of microbial spoilage of grass carp (Ctenopharyngodon idellus) fillets with a chitosan-based coating during refrigerated storage [J]. International Journal of Food Microbiology, 2018, 285: 61-68.
[16] DABADÉ, D. SYLVAIN, DEN BESTEN H M W, et al. Spoilage evaluation, shelf-life prediction, and potential spoilage organisms of tropical brackish water shrimp (Penaeus notialis) at different storage temperatures[J]. Food Microbiology, 2015, 48: 8-16.
[17] 李来好, 彭城宇, 岑剑伟, 等. 冰温气调贮藏对罗非鱼片品质的影响[J]. 食品科学, 2009, 30(24): 439-443.
[18] FINCH E D, HARMON J F, MULLER B H.Pulsed NMR measurements of diffusion constant of water in muscle[J]. Archives of Biochemistry and Biophysics, 1971, 147 (1) : 299.
[19] 姜晓文, 韩剑众. 生鲜猪肉持水性的核磁共振研究[J]. 食品工业科技, 2009, 30 (7) : 128-130.
[20] PHILIPP S, TOMAS U, MARKUS V. Direct and quantitative measurements of concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts[J]. Journal of Colloid and Interface Science, 2015, 446: 244-251.
[21] 林向阳. 核磁共振及成像技术在面包制品加工与储藏过程中的研究[D]. 南昌: 南昌大学, 2006.
[22] WANG H, LUO Y K, SHEN H X,et al. Effect of frozen storage on thermal stability of sarcoplasmic protein;and myofibrillar protein from common carp (Cyprinus carpio) muscle[J]. International Journal of Food Science & Technology, 2013, 48(9): 1 962-1 969.
[23] 李春, 张录达, 任发政, 等. 利用低场核磁共振研究冷却条件对猪肉保水性的影响[J].农业工程学报, 2012, 28 (23) : 243-249.
[24] REN X Q, YU H H, MA L Z .Quality changes of ground pork during cold storage determined by LF NMR[J]. Food Research and Development, 2015, 36(15): 120-123.
[25] 张强, 胡维岗, 金新文. 不同贮藏温度对河鲈新鲜度与质构性能的影响[J]. 食品与发酵工业, 2015, 41(10): 182-185.
[26] 李婷婷. 大黄鱼生物保鲜技术及新鲜度指示蛋白研究[D]. 杭州:浙江工商大学, 2013.
[27] CHERET R, CHAPLEAU N, DELBARRE-LADRAT C, et al.Effects of high pressure on texture and microstructure of sea bass(Dicentrarchus labrax L.)fillets[J]. Journal of Food Science, 2005, 70(8): e477-e483.
[28] 黄文博, 谢晶, 罗超, 等. 冷链物流中温度波动对美国红鱼品质变化的影响[J]. 食品科学, 2016, 37(18): 268-274.
[29] SUN X H, XIAO L, LAN W Q, et al. Effects of temperature fluctuation on quality changes of large yellow croaker (/r, Pseudosciaena crocea/r, ) with ice storage during logistics process[J]. Journal of Food Processing and Preservation, 2017: 42(4): 81-87.