综述与专题评论

微生物法合成N-乙酰氨基葡萄糖及其衍生物的研究进展

  • 牛腾飞 ,
  • 李江华 ,
  • 堵国成 ,
  • 刘龙 ,
  • 陈坚
展开
  • (糖化学与生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
博士研究生(李江华教授和刘龙教授为共同通讯作者,E-mail:lijianghua@jiangnan.edu.cn;longliu@jiangnan.edu.cn)

收稿日期: 2019-09-15

  网络出版日期: 2020-03-27

基金资助

国家优秀青年基金(31622001);国家自然科学基金面上项目(21676119)

Research progress on microbiological synthesis of N-acetylglucosamine and its derivatives

  • NIU Tengfei ,
  • LI Jianghua ,
  • DU Guocheng ,
  • LIU Long ,
  • CHEN Jian
Expand
  • (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2019-09-15

  Online published: 2020-03-27

摘要

氨基葡萄糖(glucosamine, GlcN)是葡萄糖2位碳上的羟基被氨基取代后的氨基单糖。GlcN及其衍生物N-乙酰氨基葡萄糖(GlcNAc)在食品、医药和化妆品领域具有广泛应用。文章综述了生物法生产N-乙酰氨基葡萄糖及其衍生物代谢工程策略的研究进展,并对其潜在问题及应用前景进行了展望。

本文引用格式

牛腾飞 , 李江华 , 堵国成 , 刘龙 , 陈坚 . 微生物法合成N-乙酰氨基葡萄糖及其衍生物的研究进展[J]. 食品与发酵工业, 2020 , 46(1) : 274 -279 . DOI: 10.13995/j.cnki.11-1802/ts.022263

Abstract

Glucosamine (GlcN) is an amino sugar derived from substituting a 2-hydroxyl group of a glucose molecule with an amino group. GlcN and its derivative, N-acetylglucosamine (GlcNAc), are widely used in food, medicine and cosmetics industries. This paper summarized and reviewed recent metabolic engineering strategies in biosynthesis of GlcNAc and its derivatives and its potential challenges in engineering and application.

参考文献

[1] EL ASHRY E, ALY M. Synthesis and biological relevance of N-acetylglucosamine-containing oligosaccharides[J]. Pure and Applied Chemistry, 2007, 79(12):2 229-2 242.
[2] YADAV V, PANILAITIS B, SHI H, et al. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus[J]. PLoS One, 2011, 6(6):e18 099.
[3] CHEN J K, SHEN C R, YEH C H, et al. N-acetyl glucosamine obtained from chitin by chitin degrading factors in Chitinbacter tainanesis[J]. International Journal of Molecular Sciences, 2011, 12(2):1 187-1 195.
[4] HULIKOVA K, SVOBODA J, BENSON V, et al. N-acetyl-D-glucosamine-coated polyamidoamine dendrimer promotes tumor-specific B cell responses via natural killer cell activation[J]. International Immunopharmacology, 2011, 11(8):955-961.
[5] DENG M D, SEVERSON D K, GRUND A D, et al. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine[J]. Metabolic Engineering, 2005, 7(3):201-214.
[6] LIU L, LIU Y, SHIN H D, et al. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology[J]. Applied Microbiology and Biotechnology, 2013, 97(14):6 113-6 127.
[7] LIU Y, ZHU Y, LI J, et al. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production[J]. Metabolic Engineering, 2014, 23:42-52.
[8] WANG Y Y, XU J Z, ZHANG W G. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review[J]. Critical Reviews in Biotechnology, 2019, 39(5):633-647.
[9] JIN P, KANG Z, YUAN P, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168[J]. Metabolic Engineering, 2016, 35:21-30.
[10] WESTBROOK AW, REN X, OH J, et al. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis[J]. Metabolic Engineering, 2018, 47:401-413.
[11] LIU L, LIU Y, SHIN H D, et al. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives[J]. Applied Microbiology and Biotechnology, 2013, 97(14):6 149-6 158.
[12] DENG M D, ANGERER J D, CYRON D, et al. Process and material for production of glucosamine and N-acetylglucosamine: US8124381[P]. 2012-2-28.
[13] 陈鑫. 代谢工程改造大肠杆菌发酵生产氨基葡萄糖及过程优化与控制[D]. 无锡: 江南大学, 2012.
[14] 丁振中, 冯小海, 张超, 等. 产氨基葡萄糖工程菌的构建与发酵培养基优化[J]. 化工管理, 2018(3):73-75.
[15] LIU Y, LIU L, SHIN H D, et al. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine[J]. Metabolic Engineering, 2013, 19:107-115.
[16] COLLINS J A, IRNOV I, BAKER S, et al. Mechanism of mRNA destabilization by the glmS ribozyme[J]. Genes & Development, 2007, 21(24):3 356-3 368.
[17] WINKLER W C, NAHVI A, ROTH A, et al. Control of gene expression by a natural metabolite-responsive ribozyme[J]. Nature, 2004, 428(6 980):281-286.
[18] 王雅婷. 生物法合成N-乙酰氨基葡萄糖[D]. 北京: 北京化工大学, 2016.
[19] TANNLER S, DECASPER S, SAUER U. Maintenance metabolism and carbon fluxes in Bacillus species[J]. Microbiology Cell Factories, 2008, 7:19.
[20] PERKINS J, WYSS M, SAUER U, et al. Metabolic Pathway Engineering Handbook[M]. New York: CRC Press, 2009.
[21] LIU Y, ZHU Y, MA W, et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis[J]. Metabolic Engineering, 2014, 24:61-69.
[22] MA W, LIU Y, SHIN H D, et al. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetylglucosamine production[J]. Bioresource Technology, 2018, 250:642-649.
[23] LO T M, TEO W S, LING H, et al. Microbial engineering strategies to improve cell viability for biochemical production[J]. Biotechnology Advances, 2013, 31(6):903-914.
[24] NIU T, LIU Y, LI J, et al. Engineering a glucosamine-6-phosphate responsive glmS ribozyme switch enables dynamic control of metabolic flux in Bacillus subtilis for overproduction of N-acetylglucosamine[J]. ACS Synthetic Biology, 2018, 7(10):2 423-2 435.
[25] WU Y, CHEN T, LIU Y, et al. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis[J]. Metabolic Engineering, 2018, 49:232-241.
[26] SEGALL-SHAPIRO T H, SONTAG E D, VOIGT C A. Engineered promoters enable constant gene expression at any copy number in bacteria[J]. Nature Biotechnology, 2018, 36(4):352-358.
[27] GUPTA A, REIZMAN IM, REISCH C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3):273-279.
[28] YANG J, SEO S W, JANG S, et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes[J]. Nature Communications, 2013, 4:1 413.
[29] CAROTHERS J M, GOLER J A, JUMINAGA D, et al. Model-driven engineering of RNA devices to quantitatively program gene expression[J]. Science, 2011, 334(6 063):1 716-1 719.
[30] DAHL R H. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31:1 039-1 046.
[31] WEISSMANN B, MEYER K. The Structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord[J]. Journal of the American Chemical Society, 1954, 76:1 753-1 757
[32] KOGAN G, SOLTES L, STERN R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters, 2007, 29(1):17-25.
[33] WIDNER B, BEHR R, VON DOLLEN S, et al. Hyaluronic acid production in Bacillus subtilis[J]. Applied and Environmental Microbiology, 2005, 71(7):3 747-3 752.
[34] IZAWA N, SERATA M, SONE T, et al. Hyaluronic acid production by recombinant Streptococcus thermophilus[J]. Journal of Bioscience and Bioengineering, 2011, 111(6):665-670.
[35] JIA Y, ZHU J, CHEN X, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights[J]. Bioresource Technology, 2013, 132:427-431.
[36] JEONG E, SHIM W Y, KIM J H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight[J]. Journal of Biotechnology, 2014, 185:28-36.
[37] CHENG F, GONG Q, YU H, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum[J]. Biotechnology Journal, 2016, 11(4):574-584.
[38] CHENG F, LUOZHONG S, GUO Z, et al. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation[J]. Biotechnology Journal, 2017, 12(10).DOI:10.1002/biot.201700191.
[39] CHENG F, YU H, STEPHANOPOULOS G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid[J]. Metabolic Engineering, 2019.DOI:10.1016/j.ymben.2019.08.011.
[40] VARKI A. Diversity in the sialic acids[J]. Glycobiology, 1992, 2(1):25-40.
[41] WANG B. Sialic acid is an essential nutrient for brain development and cognition[J]. Annual Review of Nutrition, 2009, 29:177-222.
[42] BONDIOLI L, RUOZI B, BELLETTI D, et al. Sialic acid as a potential approach for the protection and targeting of nanocarriers[J]. Expert Opinion on Drug Delivery, 2011, 8(7):921-937.
[43] ISHIKAWA M, KOIZUMI S. Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli[J]. Carbohydrate Research, 2010, 345(18):2 605-2 609.
[44] KANG J, GU P, WANG Y, et al. Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli[J]. Metabolic Engineering, 2012, 14(6):623-629.
[45] YAN Q, FONG S S. Design and modularized optimization of one-step production of N-acetylneuraminic acid from chitin in Serratia marcescens[J]. Biotechnology and Bioengineering, 2018, 115(9):2 255-2 267.
[46] ZHANG X, LIU Y, LIU L, et al. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis[J]. Biotechnology and Bioengineering, 2018, 115(9):2 217-2 231.
文章导航

/