研究报告

天然香料植物油樟叶可培养内生细菌群落结构与多样性

  • 周万海 ,
  • 杨立艳 ,
  • 李苗 ,
  • 黄金凤 ,
  • 梁玉娟 ,
  • 王鑫 ,
  • 罗思灿 ,
  • 魏琴 ,
  • 刘洋
展开
  • 1(宜宾学院,香料植物资源开发与利用四川省高校重点实验室,四川 宜宾,644000);
    2(北京科技大学 化学与生物工程学院,北京,100083)
博士,副教授(魏琴教授和刘洋副教授为共同通讯作者,E-mail: weiqin2001-67@163.com,liuyang@ustb.edu.cn)

收稿日期: 2019-07-03

  网络出版日期: 2019-12-20

基金资助

香料植物资源开发与利用四川省高校重点实验室开放基金项目(2018XLZ009);国家自然科学基金(31700025);生物资源副产物绿色利用宜宾学院科研创新团队(2017TD01);中央高校基本科研业务费资助项目(FRF-TP-18-012A1; FRF-BR-18-009B)

Structure and diversity of culturable endophytic bacteria in natural spice Cinnamomum longepaniculatum (Gamble) N. Chao leaves

  • ZHOU Wanhai ,
  • YANG Liyan ,
  • LI Miao ,
  • HUANG Jinfeng ,
  • LIANG Yujuan ,
  • WANG Xin ,
  • LUO Sican ,
  • WEI Qin ,
  • LIU Yang
Expand
  • 1(Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education,Yibin University, Yibin 644000, China);
    2(School of Chemical and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China)

Received date: 2019-07-03

  Online published: 2019-12-20

摘要

该文旨在研究天然香料植物油樟叶内生细菌群落组成。利用传统平板分离法对春夏秋冬4个季节油樟叶内生细菌进行分离,并通过形态观察挑取166株有代表性的菌株进行基于16S rDNA基因序列的系统发育和多样性分析。结果表明,不同季节油樟叶片中的内生细菌数量在0.7×103~4.5×104 CFU/g,其中秋季的数量最多。扩增 16S rDNA基因序列鉴定所得菌株可分为3个门13个属40个种,其中春季9个属23个种,夏季4个属 4个种,秋季5个属 11个种,冬季1个属 2个种,4个季节优势菌均为芽胞杆菌(Bacillus),且不同季节的内生细菌种群数量、均匀度、优势度存在差异,秋季群种类较丰富,优势属突出,且分布均匀,冬季多样性、优势度和均匀度较低。该研究为进一步挖掘油樟与其内生菌之间的互作关系提供参考依据,可为深入研究油樟叶内生菌与其物质代谢和樟油合成调控提供供试菌种资源基础。

本文引用格式

周万海 , 杨立艳 , 李苗 , 黄金凤 , 梁玉娟 , 王鑫 , 罗思灿 , 魏琴 , 刘洋 . 天然香料植物油樟叶可培养内生细菌群落结构与多样性[J]. 食品与发酵工业, 2019 , 45(20) : 43 -51 . DOI: 10.13995/j.cnki.11-1802/ts.021539

Abstract

The purpose of this study was to investigate the composition of endophytic bacterial communities in Cinnamomum longepaniculatum (Gamble) N. Chao leaves. A total of 166 representative strains were selected by morphological observation, followed by performing phylogenetic and diversity analyses based on 16S rDNA sequence. The results revealed that the population of endophytic bacteria varied between 0.7×103 and 4.5×104 CFU/g in leaves collected in different seasons, with the largest population observed in autumn. Strains identified were divided into 3 phyla, 13 genera, and 40 species. Nine genera and 23 species were identified in spring, four genera and four species identified in summer, five genera and 11 species found in autumn, and one genus and two species found in winter. Additionally, strains from genus Bacillus was the dominant bacteria in all samples. The leaves collected in autumn had abundant species, and the dominant genera were prominent and evenly distributed. In comparison, the diversity, dominance and evenness of endophytic bacteria in winter leaves were low. This study provides the groundwork for further exploration of the interactions between Cinnamomum longepaniculatum (Gamble) N. Chao leaves and symbiotic endophytic bacteria, as well as for investigating its metabolites and controlling essential oil synthesis.

参考文献

[1] CAMPISANO A, ANTONIELLI L, PANCHER M, et al. Bacterial endophytic communities in the grapevine depend on pest management[J]. PloS One, 2014, 9(11):e111263.
[2] 沙月霞. 不同水稻组织内生细菌的群落多样性[J].微生物学报, 2018, 58(12): 172-184.
[3] 张珣,李燕,刘晓,等.红地球葡萄健康叶片内生细菌多样性分析[J].植物病理学报, 2017, 47(1): 107-116
[4] 林标声,宋昭昭,张丽丽,等.巨菌草不同生长时期根、茎、叶内生细菌组成的多样性及差异[J].福建农林大学学报(自然科学版), 2018, 47(3): 352-360.
[5] WANG Qiong, YE Jiayuan, WU Yingjie, et al. Promotion of the root development and Zn uptake of Sedum alfredii was achieved by an endophytic bacterium Sasm05 [J]. Ecotoxicology and Environmental Safety, 2019, 172: 97-104.
[6] 杨波,陈晏,李霞,等.植物内生菌促进宿主氮吸收与代谢研究进展[J].生态学报, 2013, 33(9): 2 656-2 664.
[7] ABD_ALLAH E F, ALQARAWI A A, HASHEM A, et al. Endophytic bacterium/r Bacillus subtilis/r (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms [J].Journal of Plant Interactions, 2018, 13(1): 37-44.
[8] AFRIDI M S, MAHMOOD T, SALAM A, et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes[J]. Plant Physiology and Biochemistry, 2019, 139: 569-577.
[9] DI FIORE S,DEL GALLO M. Endophytic Bacteria: Their Possible Role in the Host Plant[M]. Azospirillum VI and related microorganisms. Berlin,Heidelberg: Springer,1995: 169-185.
[10] MILIUTE I, BUZAITE O, BANIULIS D, et al. Bacterial endophytes in agricultural crops and their role in stress tolerance: A review[J]. Zemdirbyste-Agriculture, 2015, 102(4): 465-478.
[11] 田红玉,陈海涛,孙宝国. 食品香料香精发展趋势[J].食品科学技术学报, 2018, 36(2): 1-11.
[12] 谭韵雅,卢红,李群,等. 油樟油对油樟内生真菌中活性化合物影响[J].天然产物研究与开发, 2015, 27:1 070-1 075.
[13] 罗中杰,李维一,魏琴,等. 宜宾油樟的现状及未来[J].四川师范大学学报(自然科学版), 2001, 24 (3): 317-319.
[14] 何玲敏,叶建仁. 植物内生细菌及其生防作用研究进展[J].南京林业大学学报(自然科学版), 2014, 38(6): 153-159.
[15] 杨成德,王玉琴,陈秀蓉,等. 2种嵩草属牧草休眠期内生细菌多样性研究[J].草业学报, 2016, 25(8):136-144.
[16] 李海云. 八角内生真菌的分离及其生物转化苯类香料的研究[J].南宁:广西大学, 2016.
[17] 杜永华,敖光辉,魏琴,等. 油樟叶多糖的提取及其体外抗自由基活性研究[J].食品与发酵工业, 2015, 41(5): 209-213;234.
[18] 张萍,王平,石超峰,等. 油樟油主成分对几种常见病原菌的抑菌活性研究[J].四川农业大学学报, 2013, 31(4): 393-397.
[19] 严宽,陈放,魏琴,等. 内生真菌对油樟挥发油积累及生理生化特性的影响[J].生物技术通报, 2017, 33(3):138-143.
[20] 王涛,游玲,黄乃耀,等. 油樟内生真菌多样性与对植物病原菌的抑菌活性[J]. 江苏农业科学, 2009,(1): 98-100; 101.
[21] 游玲,王涛,李兰,等. 78株油樟内生真菌发酵产物的挥发性组分分析[J]. 西北农林科技大学学报(自然科学版),2009,37(9):193-198.
[22] 冯瑞章,周诰均,魏琴,等. 油樟内生溶磷菌的筛选及其生物学特性[J].广西植物, 2016, 36(11): 1 396-1 402.
[23] OROLE O O, ADEJUMO T O. Bacterial and fungal endophytes associated with grains and roots of maize [J].Journal of Ecology and the Natural Environment, 2011, 3(9): 298-303.
[24] KIM M, OH H S, PARK S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(2): 346-351.
[25] HAMMER O, HARPER D A T, RYAN P D. PAST:Palaeontological statistics software package of education and data analysis [J]. Palaeontologia Electronica, 2001, 4(1): 1-9.
[26] 沈法富,韩秀兰,范术丽.转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化[J].生态学报, 2003, 24(3): 432-437.
[27] STIRLING G, WILSEY B. Empirical relationships between species richness, evenness and proportional diversity [J]. American Naturalist, 2001, 158(3): 286-299.
[28] HALLMAN J, QUADT-HALLMANN A, MAHAFFEE W F, et al. Bacterial endophytes in agricultural crops [J].Canadian Journal of Microbiology, 1997, 43(10): 895-914.
[29] BADRI D V, CHAPARRO J M, ZHANG R, et al. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microblome [J].The Journal of Biological Chemistry, 2013, 288(7): 4 502-4 512.
[30] ZELLES L, BAI Q Y, BECK T, et al. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils[J].Soil Biology and Biochemistry, 1992, 24(4):317-323.
[31] 李振东,陈秀蓉,李鹏. 紫花针茅内生细菌的分离与鉴定[J].草原与草坪, 2011, 31(1):8-12.
[32] 郜晨,黄淑芬,胡莉,等. 尼瓦拉野生稻内生菌多样性和促生作用[J].应用与环境生物学报, 2018, 24(1):33-38.
[33] 杨鑫,杜全能,齐文武,等.花生内生菌的分离及促生长作用初步研究[J].花生学报,2018,47(3):21-27.
[34] 胡亚杰,韦建玉,卢健,等.枯草芽孢杆菌在农作物生产上的应用研究进展[J].作物研究,2019,33(2):81-86.
[35] VAN TILBURG A Y, CAO H, VAN DER MEULEN S B, et al. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories[J]. Current Opinion in Biotechnology, 2019, 59(10): 1-7.
[36] BORAH D, YADAV R N S. Molecular characterization of biosurfactant producing Bacillus cereus strain DRDU1 for its potential application in bioremediation and further EOR studies[J]. Petroleum Science and Technology, 2018, 36(19):1 605-1 612.
[37] WANG L T, LEE F L, TAI C J, et al. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(8): 1 846-1 850.
[38] GODAN T K, RAJESH R O, LORENI P C, et al. Biotransformation of 5-hydroxymethylfurfural by Acinetobacter oleivorans S27 for the synthesis of furan derivatives[J]. Bioresource Technology, 2019, 282: 88-93.
[39] BOLOURCHI N, SHAHCHERAGHI F, SHIRAZI F, et al. Immunogenic reactivity of recombinant PKF and AbOmpA proteins as serum resistance factors against sepsis of Acinetobacter baumannii[J]. Microbial Pathogenesis, 2019, 131: 9-14.
[40] 盖忠辉. 鞘氨醇单孢菌代谢硫氮氧杂环化合物机理研究[D].济南:山东大学, 2007.
[41] TOMITA S, SUE M,KAJIKAWA A, et al. Detoxification process of tolaasins, lipodepsipeptides, by Microbacterium sp. K3-5[J]. Bioscience Biotechnology and Biochemistry, 2018,82(8): 1 455-1 458.
[42] 刘学周,赵智灵,李绍宾,等. 西洋参内生菌群落结构与多样性[J].微生物学报, 2015, 55(3): 330-340.
[43] 史应武,张雪兵,娄恺. 新疆醉马草内生菌群落结构[J].微生物学报, 2012, 52(10): 1 297-1 308.
[44] BROSI G B, MCCULLEY R L, BUSH L P, et al. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: Infection frequency and tissue chemistry[J]. New Phytologist, 2011, 189(3): 797-805.
文章导航

/