研究报告

魔芋葡甘聚糖-海藻酸钠复合益生菌微胶囊的构建及性能评价

  • 周艳林 ,
  • 吴影 ,
  • 马雨浩 ,
  • 闫佳琦 ,
  • 王大红 ,
  • 张红梅 ,
  • 古绍彬
展开
  • 1(河南科技大学 食品与生物工程学院,河南 洛阳,471023);
    2(河南省食品微生物工程技术研究中心,河南 洛阳,471023);
    3(食品加工与安全国家级实验教学示范中心,河南 洛阳,471023)
硕士研究生(古绍彬教授为通讯作者,E-mail:shaobingu@haust.edu.cn)

收稿日期: 2019-07-03

  网络出版日期: 2019-12-20

基金资助

河南省自然科学基金项目(182300410066);河南省科技攻关项目(162102210199)

Construction and performance evaluation of sodium alginate and konjac glucomannan microcapsules of multi-probiotics

  • ZHOU Yanlin ,
  • WU Ying ,
  • MA Yuhao ,
  • YAN Jiaqi ,
  • WANG Dahong ,
  • ZHANG Hongmei ,
  • GU Shaobin
Expand
  • 1(College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China);
    2(Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China);
    3(National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China)

Received date: 2019-07-03

  Online published: 2019-12-20

摘要

为提高双歧杆菌、植物乳杆菌、干酪乳杆菌3种复合益生菌经胃肠道后的存活率,采用内源乳化法,将菌株包埋在魔芋葡甘聚糖(konjac glucomannan, KGM)和海藻酸钠(sodium alginate, ALG)中制成微胶囊,通过正交实验对工艺参数进行优化,并对其性能进行检测。制备微胶囊的最佳工艺参数:ALG质量分数为3%,KGM质量分数为0.6%,水油体积比为1∶3,CaCO3与ALG质量比为1∶3,包埋率达到(76.2±5.1)%。微胶囊提高了益生菌在模拟胃液中的存活率,增强了对胆盐的耐受性。通过血清生化指标和组织病理学观察,该材料对小鼠无毒性。灌胃KGM后,小鼠肠道乳杆菌科相对丰度升高,脱硫弧菌科等有害菌相对丰度降低,说明KGM能促进肠道有益菌生长,抑制有害菌。该研究为KGM的应用探索了一条新途径,并为复合益生菌微胶囊产业化生产及推广应用提供参考。

本文引用格式

周艳林 , 吴影 , 马雨浩 , 闫佳琦 , 王大红 , 张红梅 , 古绍彬 . 魔芋葡甘聚糖-海藻酸钠复合益生菌微胶囊的构建及性能评价[J]. 食品与发酵工业, 2019 , 45(20) : 52 -60 . DOI: 10.13995/j.cnki.11-1802/ts.021548

Abstract

In order to improve the survival rates of Bifidobacteria, Lactobacillus plantarum and Lactobacillus casei after passing through the gastrointestinal tract, these strains were embedded in the microcapsules prepared by internal emulsification with konjac glucomannan (KGM) and sodium alginate. The optimal technological parameters for preparing the microcapsules were as follows: 3% ALG (w/w), 0.6% KGM (w/w), the volume ratio of water to oil was 1∶3, and the mass ratio of CaCO3 to ALG was 1∶3. Under this condition, the embedding rate reached (76.2±5.1)%. Moreover, the microcapsules not only improved the survival rate of probiotics in simulated gastric juice, but also enhanced their tolerances to bile salts. The results of serum biochemical parameters and histopathological observation showed that the material was not toxic to mice. After intragastric administration of KGM, the relative abundances of Lactobacillaceae sp. increased and Desulfovibrionaceace sp. decreased, which indicated that KGM could promote the growth of beneficial bacteria and inhibit harmful bacteria. This research expanded a new field for the application of KGM, and the results provide a reference for industrial production and application of compound probiotic microencapsulation.

参考文献

[1] ROKKA S, RANTAMAKI P. Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications[J]. European Food Research & Technology, 2010,231(1):1-12.
[2] DE CASTROCISLAGHI F P, CARINADOS REIS E S,FRITZEN-FREIRE C B, et al. Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage[J]. Journal of Food Engineering, 2012,113(2):186-193.
[3] 赵萌,蔡沙,屈方宁,等. 内源乳化法制备海藻酸盐微胶囊的研究进展[J]. 食品工业科技, 2013,34(22):392-396.
[4] KHANNA S, TESTER R F. Influence of purified konjac glucomannan on the gelatinisation and retrogradation properties of maize and potato starches[J]. Food Hydrocolloids, 2006, 20(5):567-576.
[5] CHUA M, BALDWIN T C, HOCKING T J, et al. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br.[J]. Journal of Ethnopharmacology, 2010, 128(2):268-278.
[6] CONNOLLY M L, LOVEGROVE J A, TUOHY K M, et al. Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota[J]. Journal of Functional Foods, 2010, 2(3):219-224.
[7] CHEN H L, CHENG H C, WU W T, et al. Supplementation of konjac glucomannan into a low-fiber chinese diet promoted bowel movement and improved colonic ecology in constipated adults: A placebo-controlled, diet-controlled trial[J]. Journal of the American College of Nutrition, 2008, 27(1):102-108.
[8] NISHINARI K, WILLIAMS P A, PHILLIPS G O, et al. Review of the physico-chemical characteristics and properties of konjac mannan[J]. Food Hydrocolloids, 1992,6(2):199-222.
[9] WEN X, WANG T, WANG Z, et al. Preparation of konjac glucomannan hydrogels as DNA-controlled release matrix.[J]. International Journal of Biological Macromolecules, 2008,42(3):256-263.
[10] WANG K, HE Z. Alginate–konjac glucomannan–chitosan beads as controlled release matrix[J]. International Journal of Pharmaceutics, 2002,244(1-2):117-126.
[11] WAN B R, XIA B, LI B J, et al. Semi permeable nanocapsules of konjac glucomannan–chitosan for enzyme immobilization[J]. International Journal of Pharmaceutics, 2008,364(1):102-107.
[12] CHANDRAMOULI V, KAILASAPATHY K, PEIRIS P, et al. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions[J]. Journal of Microbiological Methods, 2004,56(1):27-35.
[13] ZOU Q, ZHAO J, LIU X, et al. Microencapsulation of Bifidobacterium bifidum F-35 in reinforced alginate microspheres prepared by emulsification/internal gelation[J]. International Journal of Food Science & Technology, 2011,46(8):1 672-1 678.
[14] GANI A, SHAH A, AHMAD M, et al. β-D-glucan as an enteric delivery vehicle for probiotics[J]. International Journal of Biological Macromolecules, 2018,106:864-869.
[15] 赵萌,蔡沙,屈方宁,等. 海藻酸钠-魔芋葡甘聚糖微胶囊对嗜酸乳杆菌CGMCC1.2686保护研究[J]. 现代食品科技, 2015,31(2):70-75.
[16] MENG Z, QU F, SHA C, et al. Microencapsulation of Lactobacillus acidophilus CGMCC1.2686: Correlation between bacteria survivability and physical properties of microcapsules[J]. Food Biophysics, 2015,10(3):292-299.
[17] KUO C K, MA P X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties[J]. Biomaterials, 2001,22(6):511-521.
[18] LEROUX M A, GUILAK F, SETTON L A, et al. Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration[J]. Journal of Biomedical Materials Research, 2015,47(1):46-53.
[19] 宋娇娇,包秋华,王亚利,等. 瑞士乳杆菌MG9-2微胶囊的制备工艺优化及其性能分析[J]. 食品科学, 2017,38(14):56-64.
[20] SILVA C M, RIBEIRO A J, FIGUEIREDO I V, et al. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability[J]. International Journal of Pharmaceutics, 2006,311(1-2):1-10.
[21] SULTANA Y, MALL S, MAURYA D P, et al. Preparation and in vitro characterization of diltiazem hydrochloride loaded alginate microspheres[J]. Pharmaceutical Development and Technology, 2009, 14(3):321-331.
[22] LEE B J, MIN G H, KIM T W, et al. Preparation and in vitro release of melatonin-loaded multivalent cationic alginate beads[J]. Archives of Pharmacal Research, 1996,19(4):280-285.
[23] TAKKA S, OCAKOH, ACARTURK, et al. Formulation and investigation of nicardipine HCl-alginate gel beads with factorial design-based studies[J]. European Journal of Pharmaceutical Sciences, 1998, 6(3):241-246.
[24] MIRGHANI A, IDKAIDEK N M, SALEM M S, et al. Formulation and release behavior of diclofenac sodium in compritol 888 matrix beads encapsulated in alginate[J]. Drug Development & Industrial Pharmacy, 2000, 26(7):791-795.
[25] CHEN M, MUSTAPHA A. Survival of freeze-dried microcapsules of α-galactosidase producing probiotics in a soy bar matrix[J]. Food Microbiology, 2012, 30(1):68-73.
[26] HOMAYOUNI A, AZIZI A, EHSANI M R, et al. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream[J]. Food Chemistry, 2008, 111(1):50-55.
[27] KRASAEKOOPT W, BHANDARI B, DEETH H, et al. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria[J]. International Dairy Journal, 2004, 14(8):737-743.
[28] DE CASTROCISLAGHI F P, CARINA DOAREIS E S, FRITZEN-FREIRE C B, et al. Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage[J]. Journal of Food Engineering, 2012, 113(2):186-193.
[29] ANDRIAMANANTOANINA H, RINAUDO M. Relationship between the molecular structure of alginates and their gelation in acidic conditions[J]. Polymer International, 2010,59(11):1 531-1 541.
[30] 黄夏伶,张炜,李玉桑. 魔芋葡甘聚糖对小鼠肠道生理结构及蠕动功能的影响[J]. 现代食品科技, 2018, 34(4):7-11.
文章导航

/