生产与科研应用

柚皮纳米纤维素的制备工艺优化及形态特征

  • 范佳莹 ,
  • 李则灵 ,
  • 朱霞建 ,
  • 谈安群 ,
  • 易鑫 ,
  • 周琦 ,
  • 谭祥 ,
  • 黄林华 ,
  • 王华
展开
  • 西南大学柑桔研究所,中国农业科学院柑桔研究所,重庆,400712
硕士研究生(王华研究员为通讯作者,E-mail:wanghua@cric.cn)

收稿日期: 2019-05-21

  网络出版日期: 2019-12-20

基金资助

公益性行业(农业)专项资金-园艺作物产品加工副产物综合利用(201503142-12);柑桔加工综合利用集成科研基地建设项目(2018-000403-13-01-003433);中央高校基本业务费专项(XDJK2017C014)

Process optimization and morphological characterization of pomelo nano-cellulose

  • FAN Jiaying ,
  • LI Zeling ,
  • ZHU Xiajian ,
  • TAN Anqun ,
  • YI Xin ,
  • ZHOU Qi ,
  • TAN Xiang ,
  • HUANG Linhua ,
  • WANG Hua
Expand
  • Citrus Research Institute, Southwest University, Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712, China

Received date: 2019-05-21

  Online published: 2019-12-20

摘要

该文以丰都红心柚的中果皮为原料,采用硫酸水解法制备柚皮纳米纤维素(nano-crystal cellulose, NCC)。以H2SO4浓度、反应温度、反应时间对得率的影响进行单因素试验和响应面优化分析,并对制备出的纳米纤维素结构进行扫描电镜、红外光谱和X-射线衍射等分析。在H2SO4质量分数为62%、反应温度为50℃、反应时间为78 min的条件下制备出的NCC得率最高,为63.27%。通过扫描电镜观察得知柚皮NCC呈类球状结构均匀分布,粒径在100~200 nm;由红外光谱和X射线衍射鉴定出样品为纤维素Ⅰ型结构,结晶度达到53.75%。相较于柚皮微晶纤维素(microcrystalline cellulose,MCC),制备出的NCC具有更规则的结构、更大的比表面积和更高的结晶度,使柚皮纤维素具有了更高的应用价值。

本文引用格式

范佳莹 , 李则灵 , 朱霞建 , 谈安群 , 易鑫 , 周琦 , 谭祥 , 黄林华 , 王华 . 柚皮纳米纤维素的制备工艺优化及形态特征[J]. 食品与发酵工业, 2019 , 45(20) : 202 -208 . DOI: 10.13995/j.cnki.11-1802/ts.021162

Abstract

In order to develop the processing and pomelo peel utilization, and to increase the added value, nano-crystal cellulose (NCC) of pomelo peel was prepared by hydrolysis of sulfuric acid from the mesocarp of Fengdu red heart pomelo. The effects of sulfuric acid concentration, reaction temperature and reaction time on the yield were investigated by single factor experiment. On the basis of this, the response surface method was used to determine the optimal process parameters, and the prepared nano-cellulose structure was analyzed by scanning electron microscopy, infrared spectroscopy and X-ray diffraction. The results showed that the optimal conditions for the preparation of pomelo nano-cellulose were sulfuric acid mass fraction of 62%, reaction temperature of 50°C, reaction time of 78 min, contributing to the highest NCC yield of 63.27%. Scanning electron microscopy indicated that the NCC of the pomelo mesocarp showed a spheroidal structure with particle size between 100 nm and 200 nm, and the size distribution was uniform. The sample was identified by infrared spectroscopy as cellulose 2 structure with the crystallinity index of 53.75%. Compared with the microcrystalline cellulose (MCC), NCC has a more regular structure, a larger specific surface area and a higher crystallinity, which ensures a high application value of pomelo peel.

参考文献

[1] BRETT C, WALDRON K. Physiology and Biochemistry of plant cell walls[J]. Topics in Plant Physiology,1990,24(1):98.
[2] PARK Y B, KAFLE K, LEE C M, et al. Does cellulose II exist in native alga cell walls? Cellulose structure of Derbesia cell walls studied with SFG, IR and XRD[J]. Cellulose,2015,22(6):3 531-3 540.
[3] PHANTHONG P, REUBROYCHAROEN P,HAO X, et al. Nanocellulose: Extraction and application[J]. Carbon Resources Conversion,2018,1(1):32-43.
[4] HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews,2014,43(5):1 519-1 542.
[5] 禚晓.纳米纤维素纸基生物传感器设计[D].泰安:山东农业大学,2018.
[6] BOUJEMAOUI A, MONGKHONTREERAT S, MALMSTRM E, et al. Preparation and characterization of functionalized cellulose nanocrystals[J]. Carbohydrate Polymers,2015,115:457-464.
[7] DAS K, RAY D, BANDYOPADHYAY N R, et al. A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations[J]. Cellulose,2009,16(5):783-793.
[8] LU P, HSIEH Y L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network[J]. Carbohydrate Polymers,2010, 82(2):329-336.
[9] ELAZZOUZI-HAFRAOUI S, NISHIYAMA Y, PUTAUX J L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules,2007,9(1):57-65.
[10] HIASA S H, IWAMOTO S, ENDO T, et al. Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste[J]. Industrial Crops and Products,2014,62:280-285.
[11] SHARMA K, MAHATO N, CHO M H, et al. Converting citrus wastes into value-added products: Economic and environmently friendly approaches[J]. Nutrition,2017,34:29-46.
[12] KHAN M K, DANGLES O. A comprehensive review on flavanones, the major citrus polyphenols[J]. Journal of Food Composition and Analysis,2014,33(1):85-104.
[13] BICU I, MUSTATA F. Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents[J]. Carbohydrate Polymers,2013,98(1):341-348.
[14] BICU I, MUSTATA F. Cellulose extraction from orange peel using sulfite digestion reagents[J]. Bioresource Technology,2011,102(21):10 013-10 019.
[15] 曾小峰,彭雪娇,谈安群,等.柚皮微晶纤维素的制备及其结构特性研究[J].食品与发酵工业,2016,42(9):98-103.
[16] 曾小峰,白小鸣,盖智星,等.响应面试验优化超声辅助提取柚皮纤维素工艺[J].食品科学,2015,36(14):34-38.
[17] NAZ S, AHMAD N, AKHTAR J, et al. Management of citrus waste by switching in the production of nanocellulose[J]. IET Nanobiotechnology,2016,10(6):395-399.
[18] 唐丽荣,欧文,林雯怡,等.酸水解制备纳米纤维素工艺条件的响应面优化[J].林产化学与工业,2011,31(6):61-65.
[19] 陈珊珊,陶宏江,王亚静,等.葵花籽壳纳米纤维素制备工艺优化及其表征[J].农业工程学报,2015,31(15):302-308.
[20] 赵群.纳米微晶纤维素的制备、改性及其增强复合材料性能的研究[D].上海:东华大学,2014.
[21] 杜海顺,刘超,张苗苗,等.纳米纤维素的制备及产业化[J].化学进展,2018,30(4):448-462.
[22] JIANG F, HSIEH Y L. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers[J]. Carbohydrate Polymers,2015,122:60-68.
[23] 张恒,高洪坤,王哲,等.纳米微晶纤维素的制备与表征[J].首都师范大学学报(自然科学版),2018,39(4):31-35.
[24] 刘羽,邵国强,许炯.竹纤维与其它天然纤维素纤维的红外光谱分析与比较[J].竹子研究汇刊,2010,29(3):42-46.
[25] LIU Xiuyu, JIANG Yan, SONG Xueping, et al. A bio-mechanical process for cellulose nanofiber production – Towards a greener and energy conservation solution[J]. Carbohydrate Polymers,2019,208:191-199.
[26] SZYMAN′SKA-CHARGOT M, CHYLIN′SKA M, PIECZYMEK P M, et al. Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses[J]. Carbohydrate Polymers,2019,210:186-195.
[27] SIRO I,PLACKETT D. Microfibrillated cellulose and new nanocomposite materials: A review[J]. Cellulose,2010,17(3):459-494.
[28] ELAZZOUZI-HAFRAOUI S, NISHIYAMA Y, PUTAUX J L, et al. The Shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules,2008,9(1):57-65.
文章导航

/