生产与科研应用

薯渣再生纤维素及薯渣纤维素接枝丙烯酸的优化

  • 谭属琼 ,
  • 黄可 ,
  • 刘雄 ,
  • 谢勇武
展开
  • 1(闽南科技学院,福建 泉州,362332);
    2(西南大学 食品科学学院,重庆,400715)
硕士,副教授(刘雄教授为通讯作者,E-mail:liuxiong848 @hotmail.com)

收稿日期: 2019-05-10

  网络出版日期: 2019-12-20

基金资助

重庆市科委集成示范项目(cstc2012jcsf-jfzh0033);重庆市科委民生专项一般项目(cstc2015shmszx80016)

Optimization of regeneration and graft acrylic acid with cellulose from sweet potato residue

  • TAN Shuqiong ,
  • HUANG Ke ,
  • LIU Xiong ,
  • XIE Yongwu
Expand
  • 1(Minnan Science and Technology University, Quanzhou 362332, China);
    2(College of Food Science, Southwest University, Chongqing 400715, China)

Received date: 2019-05-10

  Online published: 2019-12-20

摘要

以薯渣再生纤维素为原料,丙烯酸为接枝共聚反应单体,制备纤维素接枝丙烯酸产物。分别以薯渣再生纤维素得率和接枝率为指标,首先以氢氧化钠-硫脲-尿素溶液体系,通过正交实验优化协同超声低温提取薯渣再生纤维素的工艺,再利用Plackett-Burman(PB)设计和中心组合设计,优化纤维素接枝丙烯酸产物的工艺条件。采用优化的工艺条件,再生纤维素得率为54.59%,纯度高达96.68%;平均接枝率为(49.024±0.131)%,与预测值49.146%接近。该研究通过纤维素接枝丙烯酸为后续金属离子吸附研究提供理论依据。

本文引用格式

谭属琼 , 黄可 , 刘雄 , 谢勇武 . 薯渣再生纤维素及薯渣纤维素接枝丙烯酸的优化[J]. 食品与发酵工业, 2019 , 45(20) : 222 -231 . DOI: 10.13995/j.cnki.11-1802/ts.021065

Abstract

Cellulose grafted acrylic acid (Cell-g-AA) product was prepared using sweet potato residue regenerated cellulose (RC) as raw material and the acrylic acid as the graft copolymerization reaction monomer. The yield and grafting rate of RC from sweet potato residue were determined by optimizing the synergistic ultrasonic low-temperature extraction of RC from sweet potato residue in sodium hydroxide-thiourea-urea solution. Plackett-Burman (PB) design and Center Combination Design (CCD) were used to optimize the processing conditions of cellulose grafted acrylic acid products. Under optimal processing conditions, the yield of RC was 54.59 %, and the purity reached 96.68 %. The average grafting rate was (49.024 ± 0.131) %, which was close to the predicted value of 49.146 %. This study provides a theoretical basis for the subsequent metal ion adsorption research by cellulose grafted acrylic acid.

参考文献

[1] MOSIER N, WYMAN C, DALE B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6):673-686.
[2] LASHEEN M R, AMMAR N S,IBRAHIM H S. Adsorption/desorption of Cd (Ⅱ), Cu (Ⅱ) and Pb (Ⅱ) using chemically modified orange peel: Equilibrium and kinetic studies[J]. Solid State Sciences, 2011, 14(2): 202-210.
[3] 陈海波,方丽,喻炎,等. 氧化再生纤维素止血产品的体外降解研究[J]. 中国医疗器械杂志, 2018, 42(5): 380-383.
[4] 谷军,吴伟兵,龚木荣,等. 超声波处理对纤维素碱脲体系溶解性能的影响[J]. 纤维素科学与技术, 2014, 22(1): 53-58.
[5] FU Lianhua, MA Mingguo, BIAN Jing, et al. Research on the formation mechanism of composites from lignocelluloses and CaCO3[J]. Materials Science and Engineering:C, 2014, 44(11): 216-224.
[6] 马红燕. 纤维素碱/尿素水溶液的制备与再生及其流动行为特征研究[D]. 广州:华南理工大学, 2018: 8-9.
[7] XU Yafeng, HUANG Qiang, FU Xiong, et al. Modification of starch octenylsuccinate by bet-amylase hydrolysis in order to increase its emulsification properties[J]. Food Hydrocolloids, 2015, 48: 55-61.
[8] 林珊,曹石林,黄六莲,等. 纤维素的溶解及其成膜研究进展[J]. 科学技术与工程, 2014, 14(4): 124-130.
[9] LI Jianguo,YANG Haiyang, HUANG Kaixin, et al. Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells[J]. Cellulose, 2018, 25(9): 5 113-5 122.
[10] O’CONNELL D W, BIRKINSHAW C, O’DWYER T F. Heavy metal adsorbents prepared from the modification of cellulose: A review[J]. Bioresource Technology, 2008, 99(15): 6 709-6 724.
[11] 孙宾宾. 纤维素接枝系列高吸水树脂γ-射线引发制备研究进展[J]. 化学工程师, 2019, 33(2): 50-52.
[12] 孙慧慧,余元善,吴继军,等. 香蕉皮接枝丙烯酸制备吸水树脂的工艺探讨[J]. 现代食品科技, 2018, 34(3): 144-148.
[13] LIU Xiongli, WEN Yangbing, QU Jialei, et al. Improving salt tolerance and thermal stability of cellulose nanofibrils by grafting modification[J]. Carbohydrate Polymers, 2019, 211(5): 257-265.
[14] 连洲洋,郭牧林,罗正维,等. 改性聚丙烯纤维的制备及其对苯系物的吸附[J]. 化工环保, 2018,38(6): 57-62.
[15] 陆红佳,郑龙辉,刘雄. 超声波辅助酶结合碱法提取薯渣纤维素的工艺研究[J]. 食品工业科技, 2012, 33(1): 234-237.
[16] 陆红佳,文红丽,刘雄. 超声波辅助酸法制备纳米薯渣纤维素的工艺研究[J]. 中国粮油学报, 2012, 27(4): 96-100.
[17] 邓海波,李中石,吴真,等. 4种天然纤维素在氢氧化钠/尿素/水体系中的溶解差异[J]. 中国造纸学报, 2012, 27(3): 43-47.
[18] RUAN Dong, ZHANG Lina, ZHOU Jinping, et al. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution[J]. Macromolecular Bioscience, 2004, 4(12): 1 105-1 112.
[19] CAI Jie, ZHANG Lina. Rapid dissolution of cellulose in LiOH/Urea and NaOH/urea aqueous solutions[J]. Macromolecular Bioscience, 2005, 5(6): 539-548.
[20] 叶菊娣,李小保,虞霁,等. NaOH/硫脲/尿素溶液溶解麦草分离纤维素的研究[J]. 湖北农业科学, 2014, 53(23): 5 828-5 831.
[21] 谷军,吴伟兵,龚木荣,等. 超声波处理对纤维素碱脲体系溶解性能的影响[J]. 纤维素科学与技术, 2014, 22(1):53-58.
[22] 赵地顺,李贺,刘猛帅,等. 尿素/己内酰胺/氢氧化钠/水溶剂体系对纤维素的溶解和再生性能[J]. 高等学校化学学报, 2011, 32(7): 1 629-1 633.
[24] GU~RDAGˇ G., YASAR M, GU~RKAYNAK M A. Graft copolymerization of acrylic acid on cellulose: Reaction kinetics of copolymerization[J]. Journal of Applied Polymer Science, 1997, 66(5): 929-934.
[25] 陈世雄,李丹,宋娟,等. 木质纤维素接枝丙烯酸系吸附剂的合成技术研究[J]. 林业实用技术, 2014(2): 57-59.
[26] 王丽,王华,何玉凤,等. 小麦秸秆纤维素接枝丙烯酸共聚物的制备及吸附性能[J]. 水处理技术, 2015, 41(4): 40-44.
[27] 贺龙强,胡鹏,刘中阳. 杨树叶纤维素接枝丙烯酸系耐盐性高吸水性树脂的制备研究[J]. 化工新型材料, 2016(4): 100-102.
[28] 黄祖强,梁兴唐,高利,等. 机械活化甘蔗渣与丙烯酸(钠)的接枝共聚反应[J]. 化工学报, 2009, 60(6): 1 573-1 580.
[29] 刘新,谢国舒,徐慧,等. 聚丙烯酸丁酯接枝共聚物的可控合成及作为相容剂的应用[J]. 高分子材料科学与工程, 2017, 33(9): 18-24.
[30] MIKKOLA,KIRILIN, JEAN-CHRISTOPHER TUUF, et al. Ultrasound enhancement of cellulose processing in ionic liquids: From dissolution towards functionalization[J]. Green Chemistry, 2007, 9(11):1 229-1 237.
[31] 戴路,戴红旗,袁洋春,等. NaOH/硫脲/尿素预处理对棉纤维TEMPO选择性氧化的影响[J]. 纤维素科学与技术, 2011, 19(1): 57-63.
[32] ZHANG Shuai, LIF X, YU Jianyong, et al. Dissolution behaviour and solubility of cellulose in NaOH complex solution[J]. Carbohydrate Polymers, 2010, 81(3): 668-674.
[33] MOHSENZADEH A, JEIHANIPOUR A, KARIMI K, et al. Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(8): 1 209-1 214.
[34] CAI Jie, ZHANG Lina, LIU Shilin, et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures[J]. Macromolecules, 2008, 41(23): 9 345-9 351.
[35] 蒋志伟. 纤维素在NaOH/尿素(或硫脲)水溶剂中的氢键作用及其包合物结构[D]. 武汉:武汉大学, 2014: 77-78.
[36] FILSON P B, DAWSON-ANDOH B E. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials[J]. Bioresource Technology, 2009, 100(7): 2 259-2 264.
[37] 周刘佳. 纳米纤维素晶须表面丙烯酸接枝改性[D]. 广州:华南理工大学, 2011: 36-39.
[38] 温纪平,王大一,卞科. 响应面法优化酵子老面馒头生产工艺研究[J]. 中国粮油学报, 2017, 32(3): 118-123.
[39] 赵文娟,宋扬,李文婧,等. 响应面法优化黑果枸杞中原花青素提取工艺[J]. 食品工业科技, 2017,38(9): 210-214;266.
[40] 刘智超. 接枝改性纤维素及其性能的研究[D]. 大连:大连工业大学, 2013: 43-46.
[41] 高桂林. 桉木纸浆制备纤维素基高吸水树脂的研究[D]. 北京:中国林业科学研究院, 2013: 47-52.
[42] 李丽琴,童张法,谢新玲,等. 机械活化玉米淀粉-丙烯酰胺-丙烯酸三元反相乳液接枝共聚反应[J]. 高分子材料科学与工程, 2011, 27(6): 30-33.
文章导航

/