在前期已获得抗金黄色葡萄球菌肠毒素B (Staphylococcal enterotoxin B, SEB)纳米抗体的基础上,建立一种用于检测食品中SEB的酶联免疫吸附法(enzyme-linked immunosorbent assay, ELISA),为食品及农产品质量监管提供技术支持。优化表达条件后,通过大肠杆菌原核表达获得抗SEB的纳米抗体B7;以纳米抗体B7作为捕获抗体,以噬菌体展示的抗SEB纳米抗体B6为检测识别元件,建立夹心ELISA方法;以牛奶、牛肉及西瓜汁为样本对其进行方法学评价。结果显示,纳米抗体B7在大肠杆菌中成功表达,表达量为 6.2 mg/L;该方法在16~1 024 ng/mL具有良好的线性关系(R2=0.990 4),最低检出限为(9.58±0.07)ng/mL;该方法与SEC有42.18%的交叉,与SEA及另外3株金黄色葡萄球菌无明显交叉;牛奶、牛肉和西瓜汁的加标回收率分别为87.26%~108.43%,79.36%~106.56% 和 83.81%~99.43%。该方法以纳米抗体作为识别元件,可应用于实际食品及农产品中的SEB高灵敏检测,具有广阔的应用前景。
In this study, a method for detection of Staphylococcal enterotoxin B (SEB) in foodstuffs through anti-SEB nanobody-mediated ELISA was developed using milk, beef and watermelon juice as samples. The method exhibited a desirable linear relationship (R2=0.9904) in a concentration range from 16 to 1 024 ng/mL, and the detection minimum was (9.58±0.07) ng/mL. The method exhibited 42.18% crossover with S. enterotoxin C while there were no significant crossovers with S. enterotoxin A and other three strains of Staphylococcus aureus. The recoveries of SEB in milk, beef and watermelon juice were 87.26%-108.43%, 79.36%-106.56% and 83.81%-99.43%, respectively. In conclusion, the ELISA used anti-SEB nanobody as a recognition element could be an alternative method for highly sensitive detection of SEB.
[1] 徐振波,刘晓晨,李琳,等. 金黄色葡萄球菌肠毒素在食源性微生物中的研究进展[J]. 现代食品科技, 2013, 29(9): 2 317-2 324.
[2] GUIDI F, DURANTI A, GALLINA S, et al. Characterization of a staphylococcal food poisoning outbreak in a workplace canteen during the post-earthquake reconstruction of central Italy[J]. Toxins, 2018, 10(12): 523.
[3] NODOUSHAN S M, NASIRIZADEH N, AMANI J, et al. An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins[J]. Biosensors and Bioelectronics, 2019, 127: 221-228.
[4] WHITE J, HERMAN A, PULLEN A M, et al. The Vβ-specific superantigen staphylococcal enterotoxin B: Stimulation of mature T cells and clonal deletion in neonatal mice[J]. Cell, 1989, 56(1): 27-35.
[5] XU Y, HUO B, LI C, et al. Ultrasensitive detection of staphylococcal enterotoxin B in foodstuff through dual signal amplification by bio-barcode and real-time PCR[J]. Food Chemistry, 2019, 283: 338-344.
[6] MONDAL B, RAMLAL S, KINGSTON J. Colorimetric DNAzyme biosensor for convenience detection of enterotoxin B harboring Staphylococcus aureus from food samples[J]. Journal of Agricultural and Food Chemistry, 2018, 66(6): 1 516-1 522.
[7] WANG W, WANG W, LIU L, et al. Nanoshell-enhanced Raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15 591-15 597.
[8] TAN F, XIE X, XU A, et al. Fabricating and regulating peroxidase-like activity of eggshell membrane-templated gold nanoclusters for colorimetric detection of staphylococcal enterotoxin B[J]. Talanta, 2019, 194: 634-642.
[9] SAPSFORD K E, FRANCIS J, SUN S, et al. Miniaturized 96-well ELISA chips for staphylococcal enterotoxin B detection using portable colorimetric detector[J]. Analytical and Bioanalytical Chemistry, 2009, 394(2): 499-505.
[10] NIA Y, RODRIGUEZ M, ZELENY R, et al. Organization and ELISA-based results of the first proficiency testing to evaluate the ability of european union laboratories to detect staphylococcal enterotoxin type B (SEB) in buffer and milk[J]. Toxins, 2016, 8(9): 268.
[11] REDDY P K, SHEKAR A, KINGSTON J J, et al. Evaluation of IgY capture ELISA for sensitive detection of Alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference[J]. Journal of Immunological Methods, 2013, 391(1-2): 31-38.
[12] NAGARAJ S, RAMLAL S, KINGSTON J, et al. Development of IgY based sandwich ELISA for the detection of staphylococcal enterotoxin G (SEG), an egc toxin[J]. International Journal of Food Microbiology, 2016, 237: 136-141.
[13] DE MEYER T, MUYLDERMANS S, DEPICKER A. Nanobody-based products as research and diagnostic tools[J]. Trends in Biotechnology, 2014, 32(5): 263-270.
[14] MUYLDERMANS S. Nanobodies: natural single-domain antibodies[J]. Annual Review of Biochemistry, 2013, 82: 775-797.
[15] BANNAS P, HAMBACH J, KOCH-NOLTE F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics[J]. Frontiers in Immunology, 2017, 8: 1 603.
[16] MODI S, HIGGS N F, SHEEHAN D, et al. Quantum dot conjugated nanobodies for multiplex imaging of protein dynamics at synapses[J]. Nanoscale, 2018, 10(21): 10 241-10 249.
[17] REN X, ZHANG Q, WU W, et al. Anti-idiotypic nanobody-phage display-mediated real-time immuno-PCR for sensitive, simultaneous and quantitative detection of total aflatoxins and zearalenone in grains[J]. Food Chemistry, 2019,297:124 912.
[18] QIU Y L, HE Q H, XU Y, et al. Deoxynivalenol-mimic nanobody isolated from a naive phage display nanobody library and its application in immunoassay[J]. Analytica Chimica Acta, 2015, 887: 201-208.
[19] LIU X, XU Y, WAN D, et al. Development of a nanobody–alkaline phosphatase fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin a in cereal[J]. Analytical Chemistry, 2015, 87(2): 1 387-1 394.
[20] HE T, WANG Y, LI P, et al. Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol[J]. Analytical Chemistry, 2014, 86(17): 8 873-8 880.
[21] LIU Y, JIANG D, LU X, et al. Phage-mediated immuno-PCR for ultrasensitive detection of Cry1Ac protein based on nanobody[J]. Journal of Agricultural and Food Chemistry, 2016, 64(41): 7 882-7 889.
[22] SUN Z, LYU J, LIU X, et al. Development of a nanobody-AviTag fusion protein and Its application in a streptavidin–biotin-amplified enzyme-linked immunosorbent assay for Ochratoxin A in cereal[J]. Analytical Chemistry, 2018, 90(17): 10 628-10 634.
[23] 曹冬梅,许杨,涂追,等. 抗黄曲霉毒素B1纳米抗体的原核表达、纯化及活性分析[J]. 食品与发酵工业, 2016, 42(5): 19-24.
[24] 沈菊泉,欧杰,林露,等. 应用ELISA和ELFA定量检测牛奶中葡萄球菌肠毒素A方法的建立[J]. 微生物学杂志, 2018, 38(3): 42-46.
[25] 中华人民共和国广东出入境检验检疫局. SN/T 1763. 2—2006(2010) 出入境口岸生物毒素检验规程[S]. 北京:中国标准出版社, 2010.