综述与专题评论

静电纺丝聚合物基质的分类及食品抗菌包装的应用

  • 邵平 ,
  • 艾芳米 ,
  • 千佩玉 ,
  • 潘杰峰
展开
  • 浙江工业大学 食品科学与工程系,浙江 杭州,310014
博士,教授(本文通讯作者,E-mail: pingshao325@zjut.edu.cn)

收稿日期: 2019-05-13

  网络出版日期: 2019-12-20

基金资助

浙江省重点研发项目(2018C02005,2018C02012)

Classification of electrospinning polymer matrix and application of antibacterial packaging

  • SHAO Ping ,
  • AI Fangmi ,
  • QIAN Peiyu ,
  • PAN Jiefeng
Expand
  • Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Received date: 2019-05-13

  Online published: 2019-12-20

摘要

随着现代食品工业对产品抗菌包装的要求不断提高,纳米技术和材料的改进与应用逐渐成为研究热点。其中静电纺丝技术是一种新兴的活性物质包埋技术,同时对活性物质也有较好的缓释效果,利用该技术制备的纳米纤维在食品工业中具有潜在的应用价值。该文从天然聚合物(蛋白质、多糖)和合成聚合物(聚乙烯醇、聚氧化乙烯、聚乳酸、聚丙烯)两方面分别综述了静电纺丝技术在食品封装抗菌物质中的应用现状,并展望了静电纺丝在食品科学领域中的应用前景。静电纺丝技术与食品抗菌包装的结合,在未来将得到更加广泛的应用,抗菌包装也将朝着更加多元化的方向发展。

本文引用格式

邵平 , 艾芳米 , 千佩玉 , 潘杰峰 . 静电纺丝聚合物基质的分类及食品抗菌包装的应用[J]. 食品与发酵工业, 2019 , 45(20) : 291 -297 . DOI: 10.13995/j.cnki.11-1802/ts.021078

Abstract

With the increasing demand for antimicrobial packaging in modern food industry, the improvement and application of nanotechnology and materials has gradually become a research hotspot. Among them, electrospinning is a new technology of embedding active substances, and it also has good slow-release effect on active substances. The nanofibers prepared by this technology have potential application value in food industry. The application status of electrospinning technology in food packaging antimicrobial substances was reviewed from two aspects, including natural polymer (protein, polysaccharide) and synthetic polymer (polyvinyl alcohol, polyethylene oxide, polylactic acid, polypropylene). The application prospect of electrospinning in food science was also prospected. The combination of electrospinning technology and food antimicrobial packaging will be more widely used in the future, and the development of antimicrobial packaging will be more diversified.

参考文献

[1] 路玲,李莉,罗自生. 纳米抗菌剂在食品中的应用研究进展[J]. 食品与发酵工业, 2018, 44(9): 279-285.
[2] 匡衡峰,胡长鹰,温晓敏,等. 纳米ZnO/壳聚糖复合膜的性能及在冷鲜猪肉保藏中的应用[J]. 食品与发酵工业, 2017, 43(4): 256-261.
[3] 孙世旭,李莉,韩祥稳,等. 纳米抗菌包装材料对延缓白莲藕风味品质劣变的影响[J]. 食品科学, 2019, 40(7): 220-226.
[4] 吴元强,许宁,陆振乾,等. 静电纺丝设备的研究进展[J]. 合成纤维工业, 2018, 41(6): 48-53.
[5] 陈榕钦,吕茹倩,梁鹏,等. 静电纺丝技术在食品科学领域中应用的研究进展[J]. 食品工业科技, 2019, 40(3): 357-362.
[6] WEN P, ZONG M H, LINHARDT R J, et al. Electrospinning: A novel nano-encapsulation approach for bioactive compounds [J]. Trends in Food Science & Technology, 2017, 70: 56-68.
[7] 王晓琳,时翠萍,张楠,等. 静电纺丝纳米纤维在食品领域中的应用进展[J]. 食品工业科技, 2017, 38(24): 334-338.
[8] 贾惜文,王浩,赵神彳,等. 以多糖和蛋白质为基质利用静电纺丝技术构建生物活性物质递送体系的研究进展[J]. 食品工业科技, 2019, 40(7): 313-321.
[9] 邓雯瑾,蒋汶龙,陈安均,等. 百里香精油抗菌涂层包装对鲜切生菜货架期内理化品质及微生物的影响[J]. 食品与发酵工业, 2016, 42(7): 247-253.
[10] ZHU F. Encapsulation and delivery of food ingredients using starch based systems [J]. Food Chemistry, 2017, 229: 542-552.
[11] EZHILARASI P N, KARTHIK P, CHHANWAL N, et al. Nanoencapsulation techniques for food bioactive components: A Review [J]. Food and Bioprocess Technology, 2013, 6(3): 628-647.
[12] -DOR-DEVIC′ V, BALANC B, BELSCAK-CVITANOVIC′ A, et al. Trends in encapsulation technologies for delivery of food bioactive compounds[J]. Food Engineering Reviews, 2015, 7(4): 452-490.
[13] LOPEZ-RUBIO A, SANCHEZ E, WILKANOWICZ S, et al. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids [J]. Food Hydrocolloids, 2012, 28(1): 159-167.
[14] PEREZ-MASIA R, LAGARON J M, LOPEZ-RUBIO A. Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying[J]. Food and Bioprocess Technology, 2014, 7(11): 3 236-3 245.
[15] BHUSHANI J A, ANANDHARAMAKRISHNAN C. Electrospinning and electrospraying techniques: Potential food based applications [J]. Trends in Food Science & Technology, 2014, 38(1): 21-33.
[16] MOOMAND K, LIM L T. Oxidative stability of encapsulated fish oil in electrospun zein fibres [J]. Food Research International, 2014, 62: 523-532.
[17] ALEHOSSEINI A, GOMEZ-MASCARAQUE L G, MARTINEZ-SANZ M, et al. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications [J]. Food Hydrocolloids, 2019, 87: 758-771.
[18] ALTAN A, AYTAC Z, UYAR T. Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging [J]. Food Hydrocolloids, 2018, 81: 48-59.
[19] AYTAC Z, IPEK S, DURGUN E, et al. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging [J]. Food Chemistry, 2017, 233: 117-124.
[20] ANTUNES M D, DA SILVA DANNENBERG G, FIORENTINI A^ M, et al. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex [J]. International Journal of Biological Macromolecules, 2017, 104: 874-882.
[21] NEO Y P, SWIFT S, RAY S, et al. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials [J]. Food Chemistry, 2013, 141(3): 3 192-3 200.
[22] LIN L, GU Y, CUI H. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese [J]. Food Packaging and Shelf Life, 2019, 19: 86-93.
[23] LIN L, ZHU Y, CUI H. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken [J]. LWT-Food Science and Technology, 2018, 97: 711-718.
[24] LIN L, GU Y, CUI H. Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef[J]. Food Packaging and Shelf Life, 2018, 18: 21-30.
[25] CUI H, BAI M, RASHED M M A, et al. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber [J]. International Journal of Food Microbiology, 2018, 266: 69-78.
[26] VEGA-LUGO A C, LIM L T. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers [J]. Food Research International, 2009, 42(8): 933-940.
[27] ZHANG L, DUDHANI A, LUNDIN L, et al. Macromolecular conjugate based particulates: Preparation, characterisation and evaluation of controlled release properties [J]. European Polymer Journal, 2009, 45(7): 1 960-1 969.
[28] ACEITUNO-MEDINA M, MENDOZA S, RODRIGUEZ B A, et al. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers [J]. Journal of Functional Foods, 2015, 12: 332-341.
[29] HOSSEINI S F, NAHVI Z, ZANDI M. Antioxidant peptide-loaded electrospun chitosan/poly(vinyl alcohol) nanofibrous mat intended for food biopackaging purposes [J]. Food Hydrocolloids, 2019, 89: 637-648.
[30] CEYLAN Z, SENGOR G F U, YILMAZ M T. Nanoencapsulation of liquid smoke/thymol combination in chitosan nanofibers to delay microbiological spoilage of sea bass (Dicentrarchus labrax) fillets [J]. Journal of Food Engineering, 2018, 229: 43-49.
[31] MUNHUWEYI K, CALEB O J, VAN REENEN A J, et al. Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils [J]. LWT-Food Scierce and Technology, 2018, 87: 413-422.
[32] SHAO P, NIU B, CHEN H, et al. Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation [J]. International Journal of Biological Macromolecules, 2018, 107: 1 908-1 914.
[33] 巫晓华. 静电纺丝制备醋酸纤维素纳米纤维及其抗菌改性[D]. 杭州:浙江理工大学, 2015.
[34] 刘雨雨. ZnO-乙基纤维素/明胶复合纳米纤维膜的制备及性质探究[D].杭州:浙江大学, 2019.
[35] 张强,王丹,李冠. 壳聚糖与大蒜素联用抑菌与伽师瓜抗菌贮藏研究[J]. 食品与发酵工业, 2018, 44(12): 123-128.
[36] 张振. 明胶和普鲁兰共混静电纺纳米纤维及其功能化研究[D]. 大连工业大学, 2016.
[37] KAYACI F, SEN H S, DURGUN E, et al. Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol [J]. Food Research International, 2014, 62: 424-431.
[38] AYTAC Z, DOGAN S Y, TEKINAY T, et al. Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers [J]. Colloids and Surfaces B: Biointerfaces, 2014, 120: 125-131.
[39] WANG X, YUE T, LEE T. Development of Pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application [J]. Food Control, 2015, 54: 150-157.
[40] WEN P, ZHU D H, WU H, et al. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging [J]. Food Control, 2016, 59: 366-376.
[41] ROJAS-MERCADO A S, MORENO-CORTEZ I E, LUCIO-PORTO R, et al. Encapsulation and immobilization of ficin extract in electrospun polymeric nanofibers [J]. International Journal of Biological Macromolecules, 2018, 118: 2 287-2 295.
[42] CUI H, BAI M, LIN L. Plasma-treated poly (ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging [J]. Carbohydrate Polymers, 2018, 179: 360-369.
[43] AYDOGDU A, YILDIZ E, AYDOGDU Y, et al. Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material [J]. Food Hydrocolloids, 2019, 95: 245-255.
[44] LIN L, DAI Y, CUI H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes [J]. Carbohydrate Polymers, 2017, 178: 131-140.
[45] CUI H, YUAN L, LI W, et al. Antioxidant property of SiO2-eugenol liposome loaded nanofibrous membranes on beef [J]. Food Packaging and Shelf Life, 2017, 11: 49-57.
[46] AYTAC Z, KUSKU S I, DURGUN E, et al. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid [J]. Materials Science and Engineering: C, 2016, 63: 231-239.
[47] WEN P, ZHU D H, FENG K, et al. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging [J]. Food Chemistry, 2016, 196: 996-1 004.
[48] CUI H, WU J, LI C, et al. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles [J]. LWT - Food Science and Technology, 2017, 81: 233-242.
[49] CHENG T H, LIN S B, CHEN L C, et al. Studies of the antimicrobial ability and silver ions migration from silver nitrate-incorporated electrospun nylon nanofibers [J]. Food Packaging and Shelf Life, 2018, 16: 129-137.
[50] GUO J, ZHOU H, AKRAM M Y, et al. Characterization and application of chondroitin sulfate/polyvinyl alcohol nanofibres prepared by electrospinning [J]. Carbohydrate Polymers, 2016, 143: 239-245.
[51] ZHAO X, CHEN S, LIN Z, et al. Reactive electrospinning of composite nanofibers of carboxymethyl chitosan cross-linked by alginate dialdehyde with the aid of polyethylene oxide [J]. Carbohydrate Polymers, 2016, 148: 98-106.
[52] LIU Y, WANG S, LAN W, et al. Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation [J]. International Journal of Biological Macromolecules, 2019, 121: 1 329-1 336.
[53] JAO C S, WANG Y, WANG C. Novel elastic nanofibers of syndiotactic polypropylene obtained from electrospinning [J]. European Polymer Journal, 2014, 54: 181-189.
文章导航

/