以特香型白酒大曲为研究对象,跟踪分析不同顶温大曲在制作过程中理化指标及菌群结构的变化规律。结果表明,中顶温曲(BM)和高顶温曲(BH)在发酵过程中的温度、水分、酸度及还原糖变化存在一定差异;Illumina MiSeq结果表明,魏斯氏菌属(Weissella)和乳杆菌属(Lactobacillus)分别为BM和BH发酵过程中的优势细菌。嗜热子囊菌属(Thermoascus)和假丝酵母属(Candida)为BH和BM的优势真菌,且发酵通过顶温区后,二者在BH中的相对丰度高于BM。同时发现Weissella、Lactobacillus、片球菌属(Pediococcus)和芽孢杆菌(Bacillus)是对大曲酸度、酸性蛋白酶活力产生重要影响的细菌。出房时BM的酸性蛋白酶活力、糖化力及酯化力均高于BH,可能与根毛霉(Rhizomucor)、红曲霉(Monascus)和曲霉属(Aspergillus)等丝状真菌相对丰度变化有关。
The changes of physiochemical indexes and microbial community structure of two different-peak-temperature batches of Special-flavor Daqu were tracked during their production process. There were certain differences in the changes of temperature, moisture, acidity and reducing sugar in the fermentation process of high top temperature (BH) Daqu and medium top temperature (BM) Daqu. The results of Illumina MiSeq sequencing showed that Weissella and Lactobacillus were the dominant bacterial genus in the whole fermentation processes of BM and BH, respectively. In terms of fungi, Thermoascus and Candida were the dominant fungi genus of BM and BH, and after the peak temperature zone, their relative abundances of BH were higher than those of BM. It was also found that Weissella, Lactobacillus, Pediococcus and Bacillus were the bacterium which had significant influences on the acidity and acid protease activity of Daqu. Moreover, the acid protease activity, saccharifying power and esterifying power of BM were higher than those of BH by the end of fermentation, which may be related to the relative abundance change of filamentous fungi such as Rhizomucor, Monascus and Aspergillus.
[1] ZHENG X W, TABRIZI M R, NOUT M J R, et al. Daqu-A Traditional Chinese Liquor Fermentation Starter[J]. Journal of the Institute of Brewing, 2012, 117(1): 82-90.
[2] ZHENG X W, YAN Z, HAN B Z, et al. Complex microbiota of a Chinese “Fen” liquor fermentation starter (Fen-Daqu), revealed by culture-dependent and culture-independent methods[J]. Food Microbiology, 2012, 31(2): 293-300.
[3] XIAO C, LU Z M, ZHANG X J, et al. Bio-heat is a key environmental driver shaping the microbial community of medium-temperature Daqu[J]. Applied & Environmental Microbiology, 2017, 83(23): e01 550-17.
[4] ZHENG X W, YAN Z, NOUT M J R, et al. Characterization of the microbial community in different types of Daqu samples as revealed by 16S rRNA and 26S rRNA gene clone libraries[J]. World Journal of Microbiology and Biotechnology, 2015, 31(1): 199-208.
[5] 邢钢, 敖宗华, 王松涛, 等. 不同温度大曲制曲过程理化指标变化分析研究[J]. 酿酒科技, 2014(6): 20-23.
[6] 刘延波, 赵志军, 陈黄曌, 等. 高通量测序技术分析浓香型白酒中温曲和高温曲的细菌群落结构[J]. 现代食品科技, 2018, 34(5): 229-235.
[7] 沈剑. 特香型大曲主要微生物区系研究[D]. 南昌: 江西农业大学, 2012.
[8] 中华人民共和国工业和信息化部. QB/T4257—2011酿酒大曲通用分析方法[S]. 北京: 中国轻工业出版社. 2012.
[9] 陈钧辉. 生物化学实验(第三版)[M]. 兰州: 兰州大学出版社, 2015.
[10] 中国国家标准化管理委员会. GB/T23527-2009蛋白酶制剂[S]. 北京: 中国标准出版社. 2009.
[11] KUMAR P, SATYANARAYANA T. Overproduction of glucoamylase by a deregulated mutant of a thermophilic mould Thermomucor indicae-seudaticae[J]. Applied Biochemistry and Biotechnology, 2009, 158(1): 113-125.
[12] 沈怡方. 白酒生产技术全书[M]. 北京: 中国轻工业出版社, 1998.
[13] LI P, LIN W, LIU X, et al. Environmental factors affecting microbiota dynamics during traditional solid-state fermentation of Chinese Daqu starter[J]. Frontiers in Microbiology, 2016, 7: 1 237.
[14] 李申奥. 兼香型白酒高温大曲微生物群落演替规律的研究[D]. 武汉: 华中农业大学, 2016.
[15] 吴树坤, 谢军, 程铁辕, 等. 不同地区浓香型大曲质量指标与细菌群落相关性研究[J]. 食品研究与开发, 2019, 40(4): 158-164.
[16] DE VUYST L, HARTH H, VAN KERREBROECK S, et al. Yeast diversity of sourdoughs and associated metabolic properties and functionalities[J]. International Journal of Food Microbiology, 2016, 239: 26-34.
[17] 郭敏, 黄永光, 邱树毅, 等. 高通量测序在酱香白酒微生态多样性研究中的应用[J]. 中国酿造, 2017, 36(5): 146-151.
[18] 薛冬. 广东星湖湿地放线菌多样性及其活性研究[D]. 合肥: 安徽农业大学, 2015.
[19] LI X R, MA E B, YAN L Z, et al. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J]. International Journal of Food Microbiology, 2011, 146(1): 31-37.
[20] 张曼, 谢军, 卫春会, 等. 浓香型单层大曲与双层大曲的质量对比分析[J]. 食品与发酵工业, 2018, 44(12): 221-228.
[21] LI P, LIANG H, LIN W T, et al. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation[J]. Applied & Environmental Microbiology, 2015, 81(15): 5 144-5 156.
[22] 岳晓平, 陈朋, 朱玥明, 等. 米曲霉酸性蛋白酶基因在毕赤酵母中的异源表达及酶学性质[J]. 生物工程学报, 2019, 35(3): 415-424.
[23] 李显, 蔡琼慧, 吴凤智. 影响酱香型大曲糖化力的因素[J]. 酿酒科技, 2017(4): 79-81.
[24] CHEN B, WU Q, XU Y. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor[J]. International Journal of Food Microbiology, 2014, 179: 80-84.
[25] SONI S K, KAUR A, GUPTA J K. A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch[J]. Process Biochemistry, 2003, 39(2): 185-192.
[26] 王小琴, 练顺才, 安明哲, 等. 大曲酯化力对固态酿酒的作用[J]. 酿酒科技, 2016(1): 63-64.
[27] 姚粟. 芝麻香型白酒高温大曲细菌群落多样性研究[D]. 北京: 北京林业大学, 2013.
[28] JIN Y, LI D, AI M, et al. Correlation between volatile profiles and microbial communities: A metabonomic approach to study Jiang-flavor liquor Daqu[J]. Food Research International, 2019, 121: 422-432.