生产与科研应用

渗透温度对压差闪蒸干燥胡萝卜脆条质构调控作用研究

  • 张竞竞 ,
  • 彭健 ,
  • 易建勇 ,
  • 毕金峰 ,
  • 吕健 ,
  • 候春辉 ,
  • 刘嘉宁
展开
  • 1(中国航空规划设计研究总院有限公司,北京, 100120)
    2(广东省农业科学院蚕业与农产品加工研究所,广东省农产品加工重点实验室,广东 广州, 510610)
    3(中国农业科学院农产品加工研究所,农业部农产品加工重点实验室,北京, 100193)
硕士研究生(毕金峰研究员为通讯作者,E-mail: bjfcaas@126.com)

收稿日期: 2020-02-10

  网络出版日期: 2020-06-17

基金资助

“十三五”国家重点研发计划(2016YFD0400700;2016YFD0400704);中国农业科学院农产品加工所所长基金(S2019RCCG01);科技创新战略专项资金(高水平农科院建设)优秀博士项目(R2019YJ-YB3009)

Study of osmotic temperature on the textural properties of instant controlled pressure drop (DIC) dried carrot chips

  • ZHANG Jingjing ,
  • PENG Jian ,
  • YI Jianyong ,
  • BI Jinfeng ,
  • LYU Jian ,
  • HOU Chunhui ,
  • LIU Jianing
Expand
  • 1(China Aviation Planning and Design Institute (Group) Co., LTD, Beijing 100120, China)
    2(Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agri-Food Processing, Guangzhou 510610, China)
    3(Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing 100193, China)

Received date: 2020-02-10

  Online published: 2020-06-17

摘要

为探究渗透温度对压差闪蒸胡萝卜脆条内部孔隙及质构品质的影响,试验采用25、50和100 ℃麦芽糖醇溶液对胡萝卜进行渗透预处理,制备压差闪蒸胡萝卜脆条。采用质构仪、X-射线计算机断层扫描及感官评价对脆条质构、微观孔隙及感官品质进行分析。结果表明,渗透过程固形物增量与脆条膨化体积间的关系可用一元二次多项式描述(R2=0.957 3),所选渗透条件下制备的压差闪蒸胡萝卜脆条外观品质均保持良好,与鲜样体积比 ≥ 0.72,且硬脆度适中(4 521~4 729 g,1.20~2.06 mm)。渗透温度对胡萝卜脆条微观结构影响显著,所选100 ℃渗透样品孔间壁厚和内部孔隙直径分布范围最宽,分别可达18~558 μm和18~1 926 μm。渗透温度对胡萝卜脆条色泽、风味和质地感官评分影响显著(P<0.05),100 ℃渗透后制备的胡萝卜脆条具有更好的色泽,25 ℃渗透后制备的脆条则具有更好的风味和质地。研究为制备多孔酥脆型胡萝卜休闲食品提供了技术和理论依据。

本文引用格式

张竞竞 , 彭健 , 易建勇 , 毕金峰 , 吕健 , 候春辉 , 刘嘉宁 . 渗透温度对压差闪蒸干燥胡萝卜脆条质构调控作用研究[J]. 食品与发酵工业, 2020 , 46(10) : 159 -165 . DOI: 10.13995/j.cnki.11-1802/ts.023569

Abstract

To investigate the effects of osmotic temperature on the texture and microstructural properties of instant controlled pressure drop (DIC) dried carrot chips, three osmotic temperatures 25, 50 and 100 °C were applied to immerse the carrot samples. Volume ratio, texture, microstructural and sensory properties of the carrot chips were measured. The results exhibited that the expanded volume of the DIC-dried samples was highly dependent on the solute gain (R2 = 0.957 3), and all of the selected osmotic conditions could be used to produce high-quality carrot chips with high volume ratio (≥0.72), appropriate hardness (4 521-4 729 g) and crispness (1.20-2.06 mm ). The microstructural characteristics were affected by osmotic temperature significantly, and the broadest range of pore wall thickness and pore size diameter were obtained at 100 ℃ and reached 18-558 μm and 18-1 926 μm, respectively. Furthermore, osmotic temperature significantly affected the sensory indicators (P<0.05), 100 ℃ osmotic samples obtained the highest color score, while the 25 °C osmotic samples obtained the strongest flavor and texture score. The present study supplied theoretical and technical support for porous carrot chips producion.

参考文献

[1] 陈瑞娟. 胡萝卜粉的高效制备及粉质特性研究[D]. 沈阳: 沈阳农业大学, 2014: 3-5.
[2] SHARMA K D, KARKI S, THAKUR N S, et al. Chemical composition, functional properties and processing of carrot-A review[J]. Journal of Food Science & Technology, 2012, 49(1): 22-32.
[3] ARSCOTT S A, TANUMIHARDJO S A. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food[J]. Comprehensive Reviews in Food Science & Food Safety, 2010, 9(2): 223-239.
[4] 易建勇, 毕金峰, 彭健,等. 农产品可控瞬时压差加工技术研究进展[J]. 现代食品科技, 2017, 33(5): 311-318.
[5] 毕金峰, 魏益民. 果蔬变温压差膨化干燥技术研究进展[J]. 农业工程学报, 2008, 24(6): 308-312.
[6] YI J Y, ZHOU L Y, BI J F, et al. Influences of microwave pre-drying and explosion puffing drying induced cell wall polysaccharide modification on physicochemical properties, texture, microstructure and rehydration of pitaya fruit chips[J]. LWT-Food Science and Technology, 2016, 70: 271-279.
[7] LI X, BI J F, JIN X, et al. Effect of the moisture equilibrium process on the expansion behavior of instant controlled pressure drop (DIC) drying of dried apple cubes[J]. Journal of the Science of Food and Agriculture, 2020, 100(4): 1 635-1 642.
[8] RGM V D S, VODA A, VAN D G, et al. Ice crystal interspacing in frozen foods[J]. Journal of Food Engineering, 2013, 116(2): 622-626.
[9] VODA A, HOMAN N, WITEK M, et al. The impact of freeze-drying on microstructure and rehydration properties of carrot[J]. Food Research International, 2012, 49(2): 687-693.
[10] CANO-LAMADRID M, LECH K, MICHALSKA A, et al. Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche[J]. Food Chemistry, 2017, 232: 306-315.
[11] NUNNES Y, MOREIRA R G. Effect of osmotic dehydration and vacuum-frying parameters to produce high-quality mango chips[J]. Journal of Food Science, 2009, 74(7): 355-362.
[12] ZOU K J, TENG J, HUANG L, et al. Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying[J]. LWT-Food Science and Technology, 2013, 51(1): 253-259.
[13] GOBBI S, FARRIS S, LIMBO S, et al. Influence of cultivar and process conditions on crispness of osmo-air-dried apple chips[J]. Journal of Food Process Engineering, 2012, 35(5): 810-820.
[14] OZEN B F, DOCK L L, OZDEMIR M, et al. Processing factors affecting the osmotic dehydration of diced green peppers[J]. International Journal of Food Science & Technology, 2002, 37(5): 497-502.
[15] 毕金峰, 丁媛媛, 王沛,等. 胡萝卜变温压差膨化干燥影响因素研究[J]. 食品与机械, 2009, 25(5): 14-17.
[16] CUI Z W, LI C Y, SONG C F, et al. Combined microwave-vacuum and freeze drying of carrot and apple chips[J]. Drying Technology, 2008, 26(12): 1 517-1 523.
[17] YI J Y, ZHOU L Y, BI J F, et al. Influence of pre-drying treatments on physicochemical and organoleptic properties of explosion puff dried jackfruit chips[J]. Journal of Food Science & Technology, 2016, 53(2): 1 111-1 120.
[18] DALEN G V, NOOTENBOOM P, VLIET L J, et al. 3D Imaging, analysis and modelling of porous cereal products using X-ray microtomography[J]. Image Analysis Stereology, 2011, 26(3): 169-177.
[19] ALAM T, TAKHAR P S. Microstructural characterization of fried potato disks using x-ray micro computed tomography[J]. Journal of Food Science, 2016, 81(3): 651-664.
[20] SCHOEMAN L, PLESSIS A, MANLEY M. Non-destructive characterisation and quantification of the effect of conventional oven and forced convection continuous tumble (FCCT) roasting on the three-dimensional microstructure of whole wheat kernels using X-ray micro-computed tomography (μCT)[J]. Journal of Food Engineering, 2016, 187: 1-13.
[21] TADESSE T F, ABERA S WORKU S. Nutritional and sensory properties of solar-dried carrot slices as affected by blanching and osmotic pre-treatments[J]. International Journal of Food Science and Nutrition Engineering, 2015, 5(1): 24-32.
[22] 陈良元, 韩李锋, 李旭, 等. 茄子片热风干燥收缩特性及其修正的湿分扩散动力学模型[J]. 农业工程学报, 2016, 32(15): 275-281.
[23] DEHGHANNYA J, GORBANI R, GHANBARZADEH B. Shrinkage of Mirabelle Plum during hot air drying as influenced by ultrasound-assisted osmotic dehydration[J]. International Journal of Food Properties, 2016, 19(5): 1 093-1 103.
[24] PENG J, BI J F, YI J Y, et al. Characteristics of cell wall pectic polysaccharides affect textural properties of instant controlled pressure drop dried carrot chips derived from different tissue zone[J]. Food Chemistry, 2019, 293: 358-367.
[25] ALLAN G G, STOYANOV A P, UEDA M, et al. Sugar-cellulose composites V. The mechanism of fiber strengthening by cell wall incorporation of sugars[J]. Cellulose, 2001, 8(2): 127-138.
[26] 金玮玲, 高虹, 范秀芝, 等. 不同预处理方法对真空冷冻干燥香菇脆片感官品质的影响[J]. 食品科学, 2017, 38(13): 108-112.
[27] BARIGOU M, DOUAIRE M. X-ray Micro-Computed Tomography for Resolving Food Microstructures[M]. UK: University of Birmingham, 2013: 246-272.
[28] SILA D N, DOUNGLA E, SMOUT C, et al. Pectin fraction interconversions: Insight into understanding texture evolution of thermally processed carrots[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 8 471-8 479.
[29] PENG J, YI J Y, BI J F, et al. Freezing as pretreatment in instant controlled pressure drop (DIC) texturing of dried carrot chips: Impact of freezing temperature[J]. LWT-Food Science and Technology, 2018, 89: 365-373.
文章导航

/