[1] KITTIBUNCHAKUL S, PHAM M L, TRAN A M, et al. β-galactosidase from Lactobacillus helveticus DSM 20075: Biochemical characterization and recombinant expression for applications in dairy industry [J]. International Journal of Molecular Sciences,2019,20(4):947.
[2] YU L, O′SULLIVAN D J. Immobilization of whole cells of Lactococcus lactis containing high levels of a hyperthermostable beta-galactosidase enzyme in chitosan beads for efficient galacto-oligosaccharide production [J]. Journal of Dairy Science,2018,101(4):2 974-2 983.
[3] GAO X, WU J, WU D. Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production [J]. Food Chemistry,2019,286:362-367.
[4] SILVERIO S C, MACDEO E A, TEIXEIRA J A, et al. New β-galactosidase producers with potential for prebiotic synthesis [J]. Bioresource Technology,2018,250:131-139.
[5] LIU P, WANG W, ZHAO J, et al. Screening novel beta-galactosidases from a sequence-based metagenome and characterization of an alkaline β-galactosidase for the enzymatic synthesis of galactooligosaccharides [J]. Protein Expression and Purification,2019,155:104-111.
[6] JENSEN T & #xD8;, POGREBNYAKOV I, FALKENBERG K B, et al. Application of the thermostable β-galactosidase, BgaB, from Geobacillus stearothermophilus as a versatile reporter under anaerobic and aerobic conditions [J]. AMB Express,2017,7(1):169.
[7] HASSAN N, NGUYEN T H, INTANON M, et al. Biochemical and structural characterization of a thermostable β-glucosidase from Halothermothrix orenii for galacto-oligosaccharide synthesis [J]. Applied Microbiology and Biotechnology,2015,99(4):1 731-1 744.
[8] DING H, ZHOU L, ZENG Q, et al. Heterologous expression of a thermostable β-1,3-galactosidase and its potential in synthesis of galactooligosaccharides [J]. Mar Drugs,2018,16(11): 1-8.
[9] HASSAN N, GEIGER B, GANDINI R, et al. Engineering a thermostable Halothermothrix orenii beta-glucosidase for improved galacto-oligosaccharide synthesis [J]. Applied Microbiology and Biotechnology,2016,100(8):3 533-3 543.
[10] LIN Q, WANG S, WANG M, et al. A novel glycoside hydrolase family 42 enzyme with bifunctional β-galactosidase and α-L-arabinopyranosidase activities and its synergistic effects with cognate glycoside hydrolases in plant polysaccharides degradation [J]. International Journal of Biological Macromolecules,2019,140:129-139.
[11] VIBORG A H, KATAYAMA T, ABOU HACHEM M, et al. Distinct substrate specificities of three glycoside hydrolase family 42 beta-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697 [J]. Glycobiology,2013,24(2):208-216.
[12] DI LAURO B, STRAZZULLI A, PERUGINO G, et al. Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: Identification of the active site residues [J]. Biochim Biophys Acta,2008,1 784(2):292-301.
[13] HIDAKA M, FUSHINOBU S, OHTSU N, et al. Trimeric crystal structure of the glycoside hydrolase family 42 β-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose [J]. J Mol Biol,2002,322(1):79-91.
[14] SOLOMON H V, TABACHNIKOV O, FEINBERG H, et al. Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus [J]. Acta Crystallographica Section F:Structural Biology and Crystallization Communications,2013,69(10):1 114-1 119.
[15] MAKSIMAINEN M, PAAVILAINEN S, HAKULINEN N, et al. Structural analysis, enzymatic characterization, and catalytic mechanisms of beta-galactosidase from Bacillus circulans sp. alkalophilus [J]. The FEBS Journal,2012,279(10):1 788-1 798.
[16] DONG Y. N, CHEN H Q, SUN Y H, et al. A differentially conserved residue (Ile42) of GH42 beta-galactosidase from Geobacillus stearothermophilus BgaB is involved in both catalysis and thermostability [J]. Journal of Dairy Science,2015,98(4):2 268-2 276.
[17] DONG Y N, WANG L, GU Q, et al. Optimizing lactose hydrolysis by computer-guided modification of the catalytic site of a wild-type enzyme [J]. Mol Divers,2013,17(2):371-382.
[18] DONG Y N, LIU X M, CHEN H Q, et al. Enhancement of the hydrolysis activity of β-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis [J]. Journal of Dairy Science,2011,94(3):1 176-1 184.
[19] SABURI W, KOBAYASHI M, MORI H, et al. Replacement of the catalytic nucleophile aspartyl residue of dextran glucosidase by cysteine sulfinate enhances transglycosylation activity [J]. The Journal of Biological Chemistry,2013,288(44):31 670-31 677.
[20] COCKBURN D W, VANDENENDE C, CLARKE A J. Modulating the pH-activity profile of cellulase by substitution: Replacing the general base catalyst aspartate with cysteinesulfinate in cellulase A from Cellulomonas fimi [J].Biochemistry,2010,49(9):2 042-2 050.
[21] ODA T, LIM K, TOMII K. Simple adjustment of the sequence weight algorithm remarkably enhances PSI-BLAST performance [J]. BMC Bioinformatics,2017,18(1):288.
[22] 董艺凝,陈海琴,张灏,等.嗜热脂肪芽孢杆菌耐热β-半乳糖苷酶功能位点的累积进化研究[J].食品工业科技,2015,36(7):148-153.
[23] FIEROBE H P, MIRGORODSKAYA E, MCGUIRE K A, et al. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400→Cys catalytic-base mutant to cysteinesulfinic acid [J]. Biochemistry,1998,37(11):3 743-3 752.
[24] CHEN W, CHEN H, XIA Y, et al. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus [J]. Journal of Dairy Science,2008,91(5):1 751-1 758.
[25] TANG Q, FENTON A W. Whole-protein alanine-scanning mutagenesis of allostery: A large percentage of a protein can contribute to mechanism [J]. Hum Mutat,2017,38(9):1 132-1 143.
[26] STRAZZULLI A, COBUCCI-PONZANO B, CARILLO S, et al. Introducing transgalactosylation activity into a family 42 β-galactosidase [J]. Glycobiology,2017,27(5):425-437.
[27] BULTEMA J B, KUIPERS B J, DIJKHUIZEN L. Biochemical characterization of mutants in the active site residues of the β-galactosidase enzyme of Bacillus circulans ATCC 31382 [J]. FEBS Open Bio,2014,4:1 015-1 020.
[28] SHAIKH F A, MULLEGGER J, HE S, et al. Identification of the catalytic nucleophile in Family 42 β-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis [J]. FEBS Lett,2007,581(13):2 441-2 446.
[29] CHANALIA P, GANDHI D, ATTRI P, et al. Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis [J]. Bioorg Chem,2018,77:176-189.