该实验考察和比较增强回补途径对谷氨酸棒状杆菌合成L-异亮氨酸的影响。通过以L-异亮氨酸生产菌Corynebacterium glutamicum YI为出发菌株,分别采用基因组整合和质粒的方式过表达磷酸烯醇式丙酮酸羧化酶编码基因ppc及丙酮酸羧化酶编码基因pyc。结果表明,获得pyc基因组整合和质粒过表达菌株ILE01和ILE02,摇瓶条件下菌株L-异亮氨酸产量分别提高17.3%(6.1 g/L)和9.6% (5.7 g/L)、发酵罐条件下分别提高11.7% (24.8 g/L)和8.1%(24.0 g/L)。获得ppc基因组整合和质粒过表达菌株ILE03和 ILE04,摇瓶条件下菌株L-异亮氨酸产量分别提高30.8% (6.8 g/L)和13.5%(5.9 g/L)、发酵罐条件下分别提高15.8% (25.7 g/L)和9.5% (24.3 g/L)。此外,过表达pyc和ppc还可不同程度地提高L-异亮氨酸转化率。然而采用质粒过表达pyc和ppc均使得菌株生物量下降。因此,过表达pyc和ppc均能显著提高L-异亮氨酸产量和转化率,基因组整合的过表达方式效果优于质粒过表达。该研究首次比较并报道了增强谷氨酸棒杆菌回补途径对谷氨酸棒杆菌生产L-异亮氨酸的影响,可为其代谢工程改造提供参考。
To clarify and compare the effects of enhancing the anaplerotic pathways on L-isoleucine production performance by Corynebacterium glutamicum. The genes of pyc and ppc were overexpressed by replacing the native promoter with Ptuf or by inserting the genes to plasmid in a L-isoleucine producer, C. glutamicum YI.The pyc overexpressed via genome-integration in ILE01 and via plasmid in ILE02 resulted in 17.3% (6.1 g/L) and 9.6% (5.7 g/L) increase in production of L-isoleucine by batch fermentation; as well as 11.7% (24.8 g/L) and 8.1% (24.0 g/L) by fed-batch fermentation. By comparison, the ppc overexpressed via the two strategies lead to 30.8% (6.8 g/L) and 13.5% (5.9 g/L), 15.8% (25.7 g/L) and 9.5% (24.3 g/L) increase by the two fermentation processes. Meanwhile, overexpression of pyc and ppc resulted in improvement of L-isoleucine yield. However, overexpression of pyc and ppc in ILE02 and ILE04 resulted in cell growth decreased. Overexpression of pyc and ppc both resulted in remarkably promotion of L-isoleucine production performance and the genome-integration overexpressing strategy was more profitable. This study first reports the effects of enhancing anaplerotic pathways on L-isoleucine production by C. glutamicum. The results would supply the reference for metabolic engineering of C. glutamicum.
[1] PARK J H, OH J E, LEE K H, et al. Rational design of Escherichia coli for L-Isoleucine Production[J]. ACS Synthetic Biology, 2012, 1(11): 532-540.
[2] LI Y, WEI H, WANG T, et al. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives[J]. Bioresource Technology, 2017, 245: 1 588-1 602.
[3] LEUCHTENBERGER W, HUTHMACHER K, DRAUZ K. Biotechnological production of amino acids and derivatives: Current status and prospects[J]. Applied Microbiology and Biotechnology, 2015, 69(1): 1-8.
[4] CHEN Z, BOMMAREDDY R R, FRANK D, et al. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum [J]. Applied and Environmental Microbiology, 2014, 80(4): 1 388-1 393.
[5] GERSTMEIR R, WENDISCH VF, SCHNICKE S, et al. Acetate metabolism and its regulation in Corynebacterium glutamicum[J]. Journal of Biotechnology, 2003, 104(1-3): 99-122.
[6] SAUER U, EIKMANNS B J. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria[J]. FEMS Microbiology Reviews, 2005, 29(4): 765-794.
[7] DELAUNAY S, UY D, BAUCHER M F, et al. Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation[J]. Metabolic Engineering, 1999, 1(4): 334-343.
[8] SATO H, ORISHIMO K, SHIRAI T, et al. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum[J]. Journal of Bioscience and Bioengineering, 2008, 106(1): 51-58.
[9] GUO Xuan, WANG Jing, XIE Xixian, et al. Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum[J]. Biotechnology Letters, 2013, 35(6): 943-950.
[10] PETERS-WENDISCH P G, WENGISCH V F,DE GRAAF A A, et al. C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum[J]. Archives of Microbiology, 1996, 165(6): 387-396.
[11] GUBLER M, PARK S M, MIKE J, et al. Effects of phosphoenolpyruvate carboxylase deficiency on metabolism and lysine production in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 1994, 40(6): 857-863.
[12] SAMBROOK J, MACCALLUM P, RUSSELL D. Molecular Cloning: A Laboratory Manual[M]. New York: Cold Spring Harbor Laboratory Press, 2001.
[13] EGGELING L, BOTT M. Handbook of Corynebacterium glutamicum[M]. Boca Raton: CRC Press, 2005: 520-521.
[14] BECKER J, ZELDER O, H & #xC3;FNER S, et al. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production[J]. Metabolic Engineering, 2011, 13(2): 159-168.
[15] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25 (4): 402-408.
[16] SAWADA K, ZEN-IN S, WADA M, et al. Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032[J]. Metabolic Engineering, 2010,12 (4): 401-407.
[17] DE FORCHETTI S R M, CAZZULO J J. Some properties of the pyruvate carboxylase from Pseudomonas fluorescens[J]. Microbiology, 1976, 93 (1): 75-81.
[18] YOKOTA A, SAWADA K, WADA M. Boosting anaplerotic reactions by pyruvate kinase gene deletion and phosphoenolpyruvate carboxylase desensitization for glutamic acid and lysine production in Corynebacterium glutamicum[J]. Advances in Biochemical Engineering-Biotechnology, 2017, 159: 181-198.
[19] PETERS-WENDISCH P G, WENDISCH V F, PAUL S, et al. Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum[J]. Microbiology, 1997, 143(4): 1 095-1 103.
[20] ZHANG Chenglin, LI Yuan, MA Jie, et al. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering[J]. Metabolic Engineering, 2018, 49: 287-298.
[21] PETERS-WENDISCH P, SCHIEL B, WENDISCH VF, et al. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum[J].Journal of Molecular Microbiology and Biotechnology, 2001, 3(2): 295-300.
[22] KIND S, JEONG W K, SCHR & #xD5;DER H, et al. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane[J]. Metabolic Engineering, 2010, 12(4): 341-351.
[23] PETERSEN S, DE GRAAF A A, EGGELING L, et al. In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum[J]. Journal of Biological Chemistry, 2000, 275(46): 35 932-35 941.
[24] NAGANO-SHOJI M, HAMAMOTO Y, MIZUNO Y, et al. Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum[J]. Molecular Microbiology, 2017, 104(4): 677-689.
[25] WADA M, SAWADA K, OGURA K, et al. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032[J].Journal of Bioscience and Bioengineering, 2016, 121(2): 172-177.