该研究以新鲜大黄鱼为对象,通过小振幅及大振幅振荡剪切流变学方法,深入探讨2种养殖模式(通框网箱和深海围网)下大黄鱼肌原纤维蛋白的流变学特性。结果表明,在温度扫描过程中,弹性模量(G′)随着温度的上升而逐渐地增大,在45~55 ℃的凝胶弱化阶段也并未下降,只减缓上升速率,而在后期的凝胶强化阶段,深海围网养殖模式的大黄鱼肌原纤维蛋白G′远大于通框养殖模式下的大黄鱼肌原纤维蛋白。而在动态应变扫描、频率扫描粘度测试中同样可以看出深海围网养殖模式的大黄鱼肌原纤维蛋白的G′值偏高。大振幅振荡剪切测试表明,深海围网养殖模式的大黄鱼肌原纤维蛋白的网络结构更紧密,剪切一周期所消耗的能量更大。
In this study, large yellow croaker was used as a target to study the rheological properties of large yellow croaker myofibrillar proteins in two farmed modes (passing box cage and deep-sea seine) through small amplitude and large amplitude oscillation shear rheological methods. The results show that during the temperature scanning process, the elastic modulus (G′) gradually increases with the increase of temperature, and does not decrease at the gel weakening stage of 45-55 °C, only slowing down the rising rate, but in the later stage. In the gel-fortification stage, the large yellow seaweed myofibrillar protein G′ in the deep-sea purse culture mode is much larger than the large yellow croaker myofibrillar protein in the per-frame culture mode. In the dynamic strain scan, frequency sweep and viscosity test, it can be seen that the G′ value of the large yellow seaweed myofibrillar protein in the deep-sea purse culture mode is high. Large-amplitude oscillatory shear tests showed that the network structure of the large yellow seaweed myofibrillar protein in the deep-sea purse culture mode was tighter, and the energy consumed by the shear cycle was greater.
[1] 阮成旭,袁重桂,陶翠丽,等.不同养殖模式对大黄鱼肉质的影响[J].水产科学,2017,36(5):623-627.
[2] 全成干,王军,丁少雄,等. 养殖大黄鱼生化组份的分析[J].台湾海峡,2000,19(2):197-200.
[3] 张彩兰,刘家富,李雅璀,等.福建省大黄鱼养殖现状分析与对策[J].上海水产大学学报,2002,11(1):77-83.
[4] 刘增胜,李书民,徐晖,等. 中国渔业统计年鉴[M]. 北京:中国农业出版社,2014:135-138.
[5] 样德康,林飞.浙江北部近海大黄鱼生殖群体现状[J].浙江水产学院学报,1988(1):73-77.
[6] 郭全友,宋炜,姜朝军,等.两种养殖模式大黄鱼营养品质及其重金属含量分析[J].食品工业科技,2016,37(6):341-345.
[7] 刘琴,包海蓉,奚春蕊,等.金枪鱼肌原纤维蛋白热凝及流变特性的研究[J].食品工业科技,2013,34(4):148-152.
[8] KATOH N,KOMATSU K. A new method for evaluation of the quality of frozen surimi from Alaska pollack [J]. Nippon Suisan Gakkaishi,1979,45:1 027-1 032.
[9] GORNALL A G, BarAWILL C J,DAVID M M. Determination of serum proteins by means of the biuret reaction[J]. Journal of Biological Chemistry,1949,177(2):751-766.
[10] 李长乐,王琛,郭全友,等.超声波、超高压处理对鲣鱼肌原纤维蛋白功能性质的影响[J].食品与发酵工业,2018,44(7):96-101.
[11] 于巍,周坚.鱼类肌原纤维蛋白热凝及流变特性研究进展[J]. 食品科技,2007,32(11):14-16.
[12] XIONG Y L. Structure- function relationships of muscle proteins[J]. Food Science and Technology-New York-Marcel Dekker,1997:341-392.
[13] DAVIES J R, LEDWARD D A, BARDSLEY R G, et al. Species dependence of fishmyosin stability to heat and frozen storage[J]. Int J Food Sci Technol,1994,29(3):287- 301.
[14] KÖK M S. Rheological study of galactomanan depolymerisation at elevated temperatures:Effect of varying pH and addition of antioxidants[J]. Carbohydate Polymers,2010,81(3):567-571.
[15] ALMDAL K,DYRE J,HVIDT S,et al. Towards a phenomenological definition of the term ‘gel’[J]. Polymer Gels Networks,1992,1(1):5-17.
[16] 刘琴. 金枪鱼肌原纤维蛋白冻藏过程中生化及流变特性研究[D]. 上海:上海海洋大学, 2013.
[17] SIM H G, AHN K H, LEE S J. Large amplitude oscillatory shear behavior of complex fluids Investigated by a network model: A guideline for classification[J]. Journal of Non-Newtonian Fluid Mechanics,2003,112(2-3): 237-250.
[18] EWOLDT R H, HOSOI A E, MCKINLEY G H. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear (LAOS)[J]. Journal of Rheology,2008,52(6):1 427-1 458.
[19] LÄUGER J,STETTIN H. Differences between stress and strain control in the non-linear behavior of complex fluids[J]. Rheologica Acta,2010,49(9):909-930.
[20] 伍秋美. SiO2分散体系流变学研究及其在防护材料方面的应用[D]. 长沙:中南大学,2007.