研究报告

溶胶-凝胶包埋法提高丙酮酸氧化酶稳定性

  • 刘冰 ,
  • 姚兵莉 ,
  • 张梦君 ,
  • 杨晔 ,
  • 周逸纯 ,
  • 张建国
展开
  • (上海理工大学 医疗器械与食品学院,食品科学与工程研究所,上海,200093)
硕士研究生(张建国副教授为通讯作者,E-mail:jgzhang@usst.edu.cn)。

收稿日期: 2019-07-12

  网络出版日期: 2020-03-13

Improving stability of pyruvate oxidase by sol-gel encapsulation

  • LIU Bing ,
  • YAO Bingli ,
  • ZHANG Mengjun ,
  • YANG Ye ,
  • ZHOU Yichun ,
  • ZHANG Jianguo
Expand
  • (Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Received date: 2019-07-12

  Online published: 2020-03-13

摘要

该研究采用溶胶-凝胶法包埋丙酮酸氧化酶,首先利用单因素实验确定了溶胶-凝胶法中每个步骤的最优条件,然后利用正交实验得到最优条件为采用5.0 mmol/L二辛基琥珀酸钠条件下振荡10 min,加入0.672 mmol/L四甲氧基硅烷吸附5 h,包埋24 h。结果表明丙酮酸氧化酶的剩余活力比对照组提高了14%,且丙酮酸氧化酶热稳定性在20~30℃时比对照组提高了2~10倍。该结果为多亚基酶的固定化提供了参考,也为丙酮酸氧化酶的应用提供了技术支持。

本文引用格式

刘冰 , 姚兵莉 , 张梦君 , 杨晔 , 周逸纯 , 张建国 . 溶胶-凝胶包埋法提高丙酮酸氧化酶稳定性[J]. 食品与发酵工业, 2020 , 46(2) : 108 -113 . DOI: 10.13995/j.cnki.11-1802/ts.021655

Abstract

Pyruvate oxidase, having multi subunits, plays an important role in food and fermentation industry. In recent years, genetic technology help to greatly increase the yield of pyruvate oxidase. However, the stability of pyruvate oxidase needs to be further improved. In this study, pyruvate oxidase was encapsulated by sol-gel technology. Firstly, single factor experiments were carried out to obtain the best value of each factor. Then an orthogonal experiment was used to optimize the conditions for pyruvate oxidase encapsulation by sol-gel technology. In this study, the optimized condition is: shaking in 5.0 mmol/L dioctyl sulfosuccinate sodium solution for 10 min; adding 0.672 mmol/L tetramethoxysilane for 5 h adsorption and then 24 h for encapsulation. The results showed that the final encapsulated pyruvate oxidase residual activity increased by 14% compared with control sample. And two to ten times increased in thermal stability of the encapsulated pyruvate oxidase than control sample at 20-30 ℃. These results provided a reliable methodology for pyruvate oxidase immobilization and application.

参考文献

[1] IKEBUKURO K, WAKAMURA H, KARUBE I, et al. Phosphate sensing system using pyruvate oxidase and chemiluminescence detection [J]. Biosensors & Bioelectronics, 1996, 11(10): 959-965.
[2] NAKAMURA H, TANAKA H, HASEGAWA M, et al. An automatic flow-injection analysis system for determining phosphate ion in river water using pyruvate oxidase G (from Aerococcus viridans) [J]. Talanta, 1999, 50(4): 799-807.
[3] KEHR S, SCHUBERT F. Pyruvate oxidase based mono- and multienzyme sensors for pyruvate determination and for ADP determination using analyte recycling [C]. The Third World Congress on Biosensors Abstracts, 1994, 164.
[4] MIZUTANI F, YABUKI S, SATO Y, et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly(vinyl alcohol)/polyion complex-bilayer membrane [J]. Electrochimica Acta, 2000, 45(18): 2 945-2 952.
[5] 王丙莲, 马耀宏, 公维丽, 等. 一种快速测定发酵液中丙酮酸含量的简易方法 [J]. 分析试验室, 2018, 37(11): 69-74.
[6] SPELLERBERG B, CUNDELL D R, SANDROS J, et al. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae [J]. Molecular Microbiology, 2010, 19(4): 803-813.
[7] MISAKI H,MATSUURA K,HARADA S. Process for the manufacture of pyruvate oxidase, and analytical method and kit for the use of the same:U.S.Patent 4,246,234[P].1981-1-20.
[8] ZHAO J, WANG Y, CHU J, et al. Statistical optimization of medium for the production of pyruvate oxidase by the recombinant Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(4): 257-262.
[9] 赵劼, 王永红, 储炬, 等. 产丙酮酸氧化酶重组大肠杆菌的发酵过程质粒稳定性研究 [J]. 常熟理工学院学报, 2015, 29(4): 1-7.
[10] LIANG J G, ZHAO J, WANG Z J, et al. Temperature gradient-based high-cell density fed-batch fermentation for the production of pyruvate oxidase by recombinant E.coli[J]. Preparative Biochemistry & Biotechnology, 2018, 48(2): 188-193.
[11] LU J, ZHAO Y, ZHANG J. High-level expression of Aerococcus viridans pyruvate oxidase in Escherichia coli by optimization of vectors and induction conditions [J]. Letters in Applied Microbiology, 2018, 67(3): 262-269.
[12] 姚兵莉, 卢俊文, 张建国. 响应面法优化表达丙酮酸氧化酶重组大肠杆菌培养基 [J]. 工业微生物, 2018, 48(6): 25-31.
[13] ZHANG J, LU J, SU E. Soluble recombinant pyruvate oxidase production in Escherichia coli can be enhanced and inclusion bodies minimized by avoiding pH stress [J]. Journal of Chemical Technology & Biotechnology, 2019, 94: 2 661-2 670.
[14] PIERRE A C. The sol-gel encapsulation of enzymes [J]. Biocatalysis and Biotransformation, 2004, 22(3): 145-170.
[15] WANG G, ZHANG L. A biofriendly sol–gel route to new hybrid gels for enzyme encapsulation [J]. Journal of Sol-Gel Science and Technology, 2014, 72(1): 85-91.
[16] ZAHARESCU M, PREDOANA L, PANDELE J. Relevance of thermal analysis for sol-gel-derived nanomaterials [J]. Journal of Sol-Gel Science and Technology, 2018, 86(1): 7-23.
[17] HONG S G, KIM B C, NA H B, et al. Single enzyme nanoparticles armored by a thin silicate network: Single enzyme caged nanoparticles [J]. Chemical Engineering Journal, 2017, 322: 510-515.
[18] DU Y, GAO J, ZHOU L, et al. Enzyme nanocapsules armored by metal-organic frameworks: A novel approach for preparing nanobiocatalyst [J]. Chemical Engineering Journal, 2017, 327:1 192-1 197.
[19] 卢俊文, 张薷月, 何宣贝, 等. 重组大肠杆菌表达绿色气球菌丙酮酸氧化酶的条件优化 [J]. 工业微生物, 2018, 48(2): 1-6.
文章导航

/