生产与科研应用

外源菌种和辅助碳源发酵糟辣椒条件优化与品质分析评价

  • 宋煜婷 ,
  • 王晓芸 ,
  • 丁筑红 ,
  • 陈思奇 ,
  • 杜勃峰 ,
  • 肖仕芸 ,
  • 余奕宏 ,
  • 王翼
展开
  • 1 (贵州大学 酿酒与食品工程学院,贵州省农畜产品贮藏与加工重点实验室,贵州 贵阳,550025)
    2 (新疆阿尔曼食品集团有限责任公司,新疆 乌鲁木齐,830052)
硕士研究生(丁筑红教授为通讯作者,E-mail:457950584@qq.com)。

收稿日期: 2019-09-29

  网络出版日期: 2020-03-13

基金资助

贵州省科学计划项目(黔科合成果[2017]4136)

Optimization of fermentation conditions for chili using exogenous strains and auxiliary carbon source and its quality evaluation

  • SONG Yuting ,
  • WANG Xiaoyun ,
  • DING Zhuhong ,
  • CHEN Siqi ,
  • DU Bofeng ,
  • XIAO Shiyun ,
  • YU Yihong ,
  • WANG Yi
Expand
  • 1 (Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, College of Brewing and Food Engineering, Guizhou University, Guiyang 550025, China)
    2 (Arman Foods Group of Xinjiang Co. Ltd., Urumqi 830052, China)

Received date: 2019-09-29

  Online published: 2020-03-13

摘要

为探讨菌种辅助碳源对糟辣椒发酵品质的影响,在分析不同处理条件下糟辣椒发酵pH、总酸、脆度及感官指标的基础上,采用模糊数学法结合逼近理想解排序(technique for order preference by similarity to an ideal solution,TOPSIS)法筛选最佳处理条件。研究发现:乳酸菌接种量、葡萄糖及乳糖添加量越大,发酵速度越快(P<0.05),而果胶添加量小于0.25%时,发酵速度较空白组快;发酵第30天,接种组、葡萄糖及乳糖处理组在果胶添加量小于0.75%时,脆度值大于空白组;葡萄糖及乳糖处理组在乳酸菌接种量低于3%时,感官评分高于空白组,而果胶处理组感官评分均低于空白组。通过TOPSIS法综合评价及验证实验最终得出,接种体积分数为2%的乳酸菌、添加50 g/L葡萄糖或30 g/L乳糖有利于促进发酵液中乳酸菌的生长及糟辣椒脆度的保持,发酵成品品质最优。模糊数学-TOPSIS法筛选外源物质在糟辣椒发酵中应用的工艺参数具有可靠性。

关键词: 糟辣椒; 葡萄糖; 乳糖; 果胶

本文引用格式

宋煜婷 , 王晓芸 , 丁筑红 , 陈思奇 , 杜勃峰 , 肖仕芸 , 余奕宏 , 王翼 . 外源菌种和辅助碳源发酵糟辣椒条件优化与品质分析评价[J]. 食品与发酵工业, 2020 , 46(3) : 131 -137 . DOI: 10.13995/j.cnki.11-1802/ts.022423

Abstract

This study aimed to investigate the effect of exogenous strains and auxiliary carbon source on pH, total acid, brittleness and sensory quality of fermented chili. The fuzzy mathematical sensory evaluation method and technique for order preference by similarity to an ideal solution (TOPSIS) method were chosen to optimize the conditions of auxiliary fermentation technology. The results showed that with the increase amount of Lactobacillus Fermentum inoculated and the more glucose and lactose added, the faster the fermentation speed was obtained (P<0.05). And when the amount of pectin added was less than 0.25%, the fermentation speed was faster than control (natural fermentation). The brittleness of fermented chili was better than the control on the conditions of inoculation with L. fermentum, addition of glucose and lactose and less than 5% pectin. The sensory evaluation score of the fermented chili were higher than control group when vaccinated less than 3% L. fermentum and added glucose and lactose respectively. However, the sensory evaluation of the group added pectin was lower than control. Through TOPSIS method and validation experiments, the optimized condition which could improve the growth of L. fermentum in the fermentation liquids and the brittleness of fermented chili was 2% L. fermentum inoculation and the addition of 5.0% glucose or 3% lactose. In conclusion, combination of fuzzy mathematics evaluation and TOPSIS method is reliable for optimizing the conditions of auxiliary fermentation technology of fermented chili.

参考文献

[1] LI J,ZHAO F,LIU H,et al. Fermented minced pepper by high pressure processing, high pressure processing with mild temperature and thermal pasteurization[J].Innovative Food Science & Emerging Technologies,2016,36:34-41.
[2] 陆宽,王雪雅,孙小静,等.电子鼻结合顶空SPME-GC-MS联用技术分析贵州不同品种辣椒发酵后挥发性成分[J].食品科学, 2018,39(4):199-205.
[3] 叶陵,李勇,王蓉蓉,等.剁辣椒中优良乳酸菌的分离鉴定及其生物学特性分析[J].食品科学, 2018,39(10):112-117.
[4] SILA D N,DOUNGLA E,SMOUT C,et al.Pectin fraction interconversions: Insight into understanding texture evolution of thermally processed carrots[J].Journal of Agricultural and Food Chemistry, 2006,54(22):8 471-8 479.
[5] BILLY L,MEHINAGIC E,ROYER G,et al.Relationship between texture and pectin composition of two apple cultivars during storage[J].Postharvest Biology and Technology,2008,47(3):315-324.
[6] 张晓,佘燕珊,龚炳德,等.剁辣椒无硫护色工艺的研究[J].现代食品科技,2013,29(4):780-783.
[7] MELDRUM R J,LITTLE C L,SAGOO S,et al.Assessment of the microbiological safety of salad vegetables and sauces from kebab
take-away restaurants in the United Kingdom[J].Food Microbiology,2009,26(6):573-577.
[8] 韩俊燕,赵国忠,赵建新,等.发酵辣椒细菌多样性的16S rDNA测序分析[J].中国食品学报, 2018, 18(5):246-251.
[9] 陈曦,许随根,周彤,等.贵州酸肉中的植物乳杆菌对发酵香肠风味和品质特性的影响[J].中国食品学报,2018,18(6):174-182.
[10] 任大勇,高良锋,杨柳,等.植物乳杆菌对辣白菜发酵过程中风味物质及菌群结构的影响[J].食品与发酵工业,2019,45(14):20-26.
[11] 林燕文,王茂先,陆宝君.具养颜功效的乳酸菌发酵型泡菜工艺条件研究[J].食品科技,2006,31(2):33-35.
[12] 杨月芬.产β-葡聚糖酶菌株的诱变育种,发酵产酶及其性质研究[D].无锡:江南大学,2008.
[13] 纪晓燚.优良乳酸菌的筛选及其发酵蔬菜的应用研究[D].杭州:浙江大学,2014.
[14] 唐鑫,夏延斌,吴灿.HS-SPME-GC-MS分析不同糖类发酵辣椒汁中的挥发性成分[J].食品与机械,2014,30(1):55-61.
[15] WANG J,CHEN L,YUAN X,et al.Effects of molasses on the fermentation characteristics of mixed silage prepared with rice straw,local vegetable by-products and alfalfa in Southeast China[J].Journal of Integrative Agriculture,2017,16(3):664-670.
[16] 李海平,周登云,付荷蓉,等.滑菇多糖对发酵酸奶品质的影响[J].食品与发酵工业,2019,45(7):188-194.
[17] 曹建康,姜微波,赵玉梅,等.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007: 28-30;84-92.
[18] 胡璇,夏延斌,邓后勤.利用质构仪测定剁辣椒脆度方法的研究[J].辣椒杂志,2010,8(3):39-43.
[19] 金银根.植物学实验与技术[M].北京:科学出版社,2007.
[20] 张洪礼,徐素云,彭邦远,等.核桃粕发酵乳菌种筛选及发酵条件优化研究[J].中国酿造,2016,35(9):180-184.
[21] 华从伶,陈忘名,张连军.基于逼近理想解排序法的进出口食品安全监管工作风险评估[J].食品科学,2014,35(9):142-146.
[22] 贾洪锋,贺稚非,李洪军,等.高效液相色谱法测定发酵辣椒中的有机酸[J].食品科学,2008(3):374-379.
[23] 宫路路,龚福明,李晓然,等.豆豉中高产乳酸乳酸菌的筛选及其产酸条件的优化研究[J].中国微生态学杂志,2013,25(5):516-520.
[24] 洪梅,刁其玉,闫贵龙,等.一株发酵乳杆菌培养条件的优化[J].饲料工业,2010,31(19):26-29.
[25] 汤鸣强,戴智钦.桔子园土壤中果胶分解菌的分离及其特性[J].中国酿造,2009 (1):55-58.
[26] GLAASKER E,HEUBERGER E H,KONINGS W N,et al.Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum[J].Journal of Bacteriology,1998,180(21):5 540-5 546.
文章导航

/