研究报告

大豆分离蛋白-大豆低聚糖糖基化产物溶解性和乳化性分析

  • 周洋莹 ,
  • 郑红莉 ,
  • 杨文钰 ,
  • 张清
展开
  • 1(四川农业大学 食品学院,四川 雅安,625014)
    2(四川省作物带状复合种植工程技术研究中心,四川 成都,611130)
硕士研究生(张清副教授为通讯作者,E-mail: zhangqing@sicau.edu.cn)

收稿日期: 2019-07-30

  网络出版日期: 2020-03-27

基金资助

国家自然科学基金项目(31401329);四川省科技厅重点研发项目(2019YFN0107)

Modification of solubility and emulsifying properties of soybean protein isolate by glycosylating with soybean oligosaccharide

  • ZHOU Yangying ,
  • ZHENG Hongli ,
  • YANG Wenyu ,
  • ZHANG Qing
Expand
  • 1(College of Food Science, Sichuan Agricultural University, Ya’an 625014, China)
    2(Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, China)

Received date: 2019-07-30

  Online published: 2020-03-27

摘要

以净作和套作大豆为原料,提取大豆分离蛋白(soybean protein isolate, SPI),与大豆低聚糖制备糖基化产物,并对其进行产物鉴定和基本功能特性分析。产物鉴定采用接枝度、十二烷基苯磺酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl benzene sulfonate-polyacrylamide gel electrophoresis, SDS-PAGE)及红外光谱(fourier transform infrared spectroscopy, FTIR)进行分析。结果表明,套作SPI糖基化的程度整体较净作高,且套作SPI与净作SPI及其糖基化产物的二级结构均存在一定差异。对于套作SPI,蛋糖比3:1的轭合物溶解度在pH 3~9范围内均有明显改善,反应6 h的轭合物在pH 8.0时溶解度最佳,达96.74%,是套作SPI的1.77倍。蛋糖比1:3比例反应6 h的轭合物乳化活性最高,为8.536 m2/g,较套作SPI提高59.76%,而蛋糖比1:2反应6 h的轭合物乳化稳定性最高,为21.481 min,较套作SPI提高35.72%。对于净作SPI,轭合物溶解性在pH 5~9范围内显著下降,在pH 6.0时降低69.49%;乳化活性较净作SPI降低4.50%,乳化稳定性提高2.47倍。该文显示糖基化处理使SPI溶解性和乳化性均有所改善,且套作SPI优于净作SPI。

本文引用格式

周洋莹 , 郑红莉 , 杨文钰 , 张清 . 大豆分离蛋白-大豆低聚糖糖基化产物溶解性和乳化性分析[J]. 食品与发酵工业, 2020 , 46(1) : 118 -124 . DOI: 10.13995/j.cnki.11-1802/ts.021827

Abstract

Soybean protein isolates (SPI) were extracted from solo-cropping soybeans and relay-cropping soybeans and were glycosylated with soybean oligosaccharides (SOS). The SPI-SOS conjugates were identified by analyzing degree of grafting, sodium dodecylbenzene sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier transform infrared spectroscopy (FTIR) spectra. The glycosylation degree of relay-cropping SPI was higher than that of solo-cropping SPI, and there were some differences among the secondary structure of relay-cropping SPI, solo-cropping SPI, and their glycosylated products. For relay-cropping SPI, the solubility of the conjugate of protein-carbohydrate 3:1 was significantly improved within the range of pH 3-9. The conjugate obtained for 6 h had the best solubility at pH 8.0, reaching 96.74%, which was 1.77 times than that of relay-cropping SPI. The emulsifying activity of the conjugate with the protein-carbohydrate ratio of 1:3 for 6 h was the highest, reaching 8.536 m2/g, which was 59.76% higher than that of relay-cropping SPI. However, the emulsifying stability of the conjugate with the protein-carbohydrate ratio of 1:2 for 6 h was the highest, reaching 21.481 min, which was 35.72% higher than that of solo-cropping SPI. For solo-cropping SPI, the solubility of the conjugate decreased significantly within the range of pH 5-9 and decreased by 69.49% at pH 6.0; the emulsification activity decreased by 4.50% compared with that of solo-cropping SPI, but the emulsifying stability increased by 2.47 times. Glycosylation improved the solubility and emulsifying properties of SPI, and more significant modification was observed in relay-cropping SPI.

参考文献

[1] 陈圣伦. 玉/豆套作模式的群体配置技术及其对大豆的效应研究[D]. 雅安:四川农业大学, 2008.
[2] 杨文钰, 雍太文,任万军,等. 发展套作大豆,振兴大豆产业[J]. 大豆科学, 2008, 27(1): 1-7.
[3] 涂宗财, 段邓乐,王辉,等. 微波处理对固相合成大豆分离蛋白-乳糖糖基化接枝物的影响[J]. 食品科学, 2015, 36(13): 32-36.
[4] 杨光胜, 陈复生,张丽芬,等. 大豆蛋白改性技术研究进展[J]. 粮食与油脂, 2013, 26(11): 1-3.
[5] ZHANG Q, LI L, LAN Q, et al. Protein glycosylation: a promising way to modify the functional properties and extend the application in food system [J]. Critical Reviews in Food Science and Nutrition, 2018,59(15): 2 506-2 533.
[6] 宋春丽, 赵新淮. 食品蛋白质的糖基化反应:美拉德反应或转谷氨酰胺酶途径[J]. 食品科学, 2013, 34(9): 369-374.
[7] AN Y, CUI B, WANG Y, et al. Functional properties of ovalbumin glycosylated with carboxymethyl cellulose of different substitution degree [J]. Food Hydrocolloids, 2014, 40: 1-8.
[8] 赵晓园. 大豆脂肪氧化酶活性影响因素研究及其应用[D]. 合肥:合肥工业大学, 2007.
[9] 杜昱蒙, 陈振家,施小迪,等. 葡萄糖糖基化大豆分离蛋白的凝胶抗冻性研究[J]. 中国粮油学报, 2016, 31(10): 45-49;55.
[10] SANG L, ZHOU X, YUN F, et al. Enzymatic synthesis of chitosan-gelatin antimicrobial copolymer and its characterization [J]. Journal of the Science of Food and Agriculture, 2010, 90(1): 58-64.
[11] 杜艳丽, 黄国清,张彤,等. 减压等离子体处理对大豆分离蛋白功能性质的影响[J]. 食品科学, 2017, 38(23): 20-25.
[12] 王松, 夏秀芳,黄莉,等. 湿法糖基化改性对大豆分离蛋白功能性质的影响[J]. 食品科学, 2014, 35(9): 38-42.
[13] 穆利霞. 大豆蛋白-糖接枝改性及其结构与功能特性研究[D]. 广州:华南理工大学, 2010.
[14] QIU Chaoying, WANG Yong, TENG Yinglai, et al. Influence of glycosylation of deamidated wheat gliadin on its interaction mechanism with resveratrol [J]. Food Chemistry, 2017, 221: 431-438.
[15] 管军军, 裘爱泳,刘晓亚,等. 微波辐射大豆分离蛋白-糖接枝反应条件的研究[J]. 食品与生物技术学报, 2005, 24(5): 16-20.
[16] MAO L, PAN Q, HOU Z, et al. Development of soy protein isolate-carrageenan conjugates through Maillard reaction for the microencapsulation of Bifidobacterium longum [J]. Food Hydrocolloids, 2018, 84: 489-497.
[17] 蒋涛, 杨文钰,刘卫国,等. 套作大豆贮藏蛋白、氨基酸组成分析及营养评价[J]. 食品科学, 2012,33(21): 275-279.
[18] LIU Y, ZHAO G, ZHAO M, et al. Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction [J]. Food Chemistry, 2012, 131(3): 901-906.
[19] 何婉莺, 李小燕,孙小雯,等. 葡聚糖-大豆分离蛋白耦联接枝工艺优化及接枝产物理化特性研究[J]. 食品工业科技, 2018, 39(4): 54-59.
[20] 齐军茹, 杨晓泉,彭志英. 利用Maillard反应制备大豆蛋白-葡聚糖共价复合物[J]. 无锡轻工大学学报, 2004, 23(5): 21-25.
[21] MARTINS J T, CERQUEIRA M A, BOURBON A I, et al. Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof [J]. Food Hydrocolloids, 2012, 29(2): 280-289.
[22] PIRESTANI S, NASIRPOUR A, KERAMAT J, et al. Structural properties of canola protein isolate-gum Arabic Maillard conjugate in an aqueous model system [J]. Food Hydrocolloids, 2018, 79: 228-234.
[23] ZHANG X, GAO H, WANG C, et al. Characterization and comparison of the structure and antioxidant activity of glycosylated whey peptides from two pathways [J]. Food Chemistry, 2018, 257: 279-288.
[24] 许彩虹, 王金梅,杨晓泉,等. 糖基化方法对于大豆7S球蛋白糖基化产物构象及功能特性的影响[J]. 食品工业科技, 2018, 39(3): 52-55;60.
[25] WANG X, ZHENG X, LIU X, et al. Preparation of glycosylated zein and retarding effect on lipid oxidation of ground pork [J]. Food Chemistry, 2017, 227: 335-341.
[26] 夏秀芳, 洪岩,郑环宇,等. 湿法糖基化改性对大豆分离蛋白溶解性和乳化能力的影响[J]. 中国食品学报, 2016, 16(1): 167-172.
[27] 蒋涛. 套作对大豆品质的影响及差异蛋白组学分析[D]. 雅安:四川农业大学, 2013.
[28] 许彩虹, 王金梅,姚玉静,等. 食品中蛋白质糖基化接枝的研究进展[J]. 现代食品科技, 2017, 33(8): 306-312;261.
[29] 王鲁慧, 肖军霞,徐同成,等. 湿热条件下大豆分离蛋白与葡萄糖、麦芽糖的美拉德反应[J]. 食品科学, 2018, 39(16): 19-26.
[30] 张蓓, 郭晓娜,朱科学,等. 燕麦蛋白糖基化改性研究[J]. 中国粮油学报, 2016, 31(6): 41-46.
文章导航

/