研究报告

基于Weibull函数的超声渗透罗非鱼片真空微波干燥模拟

  • 薛广 ,
  • 李敏 ,
  • 关志强
展开
  • 1(广东海洋大学 食品科技学院,广东省水产品加工与安全重点实验室,水产品深加工广东普通高等学校重点实验室,广东 湛江,524088)
    2(广东海洋大学 机械与动力工程学院,广东 湛江,524088)
硕士研究生(李敏教授为通讯作者,E-mail:lim@gdou.edu.cn)

收稿日期: 2019-06-18

  网络出版日期: 2020-03-27

基金资助

广东省自然科学基金项目(2015A030313613)

Simulation of vacuum microwave drying of Tilapia fillets by ultrasonic penetration based on Weibull function

  • XUE Guang ,
  • LI Min ,
  • GUAN Zhiqiang
Expand
  • 1(College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China)
    2(College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China)

Received date: 2019-06-18

  Online published: 2020-03-27

摘要

为建立罗非鱼片干燥过程动力学模型,以超声波辅助渗透处理后的罗非鱼片为研究对象,利用真空微波干燥设备,探讨不同厚度(5、7、9 mm)、微波功率(264、330、396 W)以及真空度(0.05、0.06、0.07 MPa)对罗非鱼片干燥过程的影响,采用3种经典薄层干燥模型和Weibull函数对其干燥曲线进行非线性拟合分析。结果表明:干燥时间对干燥条件的依赖性很大,随着鱼片厚度(T)、微波功率(W)和真空度(V)的改变而变化;Weibull模型拟合优度较好;基于Weibull函数计算求得估算有效水分扩散系数(Dcal)在1.187 7×10-6~2.052 1×10-6 m2/s范围内随着微波功率(W)与真空度(V)的增加而增大;几何参数Rg与厚度(T)、微波功率(W)及真空度(V)呈负相关;在实验范围内根据Arrhenius方程计算出干燥活化能为0.92 W/g,干燥较易实现。该研究可为真空微波干燥罗非鱼片工艺条件的完善和Weibull函数在罗非鱼片真空微波干燥技术的运用提供参考。

本文引用格式

薛广 , 李敏 , 关志强 . 基于Weibull函数的超声渗透罗非鱼片真空微波干燥模拟[J]. 食品与发酵工业, 2020 , 46(1) : 157 -165 . DOI: 10.13995/j.cnki.11-1802/ts.021400

Abstract

This thesis aims to establish the dynamic model of the drying process of Tilapia fillet which is the research object of this paper after ultrasonic assisted osmosis. For this purpose, vacuum microwave drying equipment was used. To investigate the effects of (5, 7, 9 mm), microwave power (264, 330, 396 W) and vacuum (0.05, 0.06, 0.07 MPa) on the drying process of Tilapia fillets, three kinds of classic thin layer drying models and the Weibull function were used to analyze the nonlinear fitting of the drying curve. The result shows that the drying time is highly dependent on the drying conditions and changes with the thickness of fish fillet, microwave power (W) and vacuum degree (V). The Weibull model has comparatively higher level of goodness of fit. The estimated effective water diffusion coefficient Dcal is positively correlated with microwave power (W) and vacuum degree (V) in the range of (1.187 7×10-6-2.052 1×10-6) m2/s based on Weibull function. Geometric parameter Rg is negatively correlated with thickness (T), microwave power (W) and vacuum degree (V). According to Arrhenius equation, the activation energy of drying is 0.92 w/g within the experimental range, and drying is easy to be realized. This study can provide reference for the improvement of vacuum microwave drying process conditions of Tilapia fillets and the application of Weibull function in vacuum microwave drying technology of Tilapia fillets.

参考文献

[1] 崔丽莉,缪祥军,许存泽,等.高原地区不同养殖模式下罗非鱼肌肉营养成分的比较[J].现代农业科技,2018(22):234-237.
[2] 杨毅.罗非鱼片的真空微波干燥特性研究[D].海口:海南大学,2012.
[3] 李晓斌,王海波,许哲,等.罗非鱼真空冷冻干燥温度的智能预测控制[J].控制工程,2011,18(5):719-722;770.
[4] 李敏,蒋小强,叶 彪.罗非鱼真空冷冻干燥过程及其能耗实验[J].农业机械学报,2008(8):202-204.
[5] 郑立静.真空冷冻干燥和热泵—微波联合干燥工艺的实验研究[D].湛江:广东海洋大学,2010.
[6] 段振华,冯爱国,向东,等.罗非鱼片的热风干燥模型及能耗研究[J].食品科学,2007,28(7):201-205.
[7] GUAN Z,WANG X,LI M,et al.Mathematical modeling on hot air drying of thin layer fresh tilapia fillets[J]. Polish Journal of Food & Nutrition Sciences, 2013, 63(1):25-33.
[8] DUAN Z H. Study on characteristic of vacuum microwave drying of tilapia fish fillets[C]//Advances in biomedical engineering- international conference on agricultural & Biosystems engineering, 2011:96-97.
[9] 刘书成,张常松,张良,等.罗非鱼片的超临界CO2干燥动力学及模型[J].农业工程学报,2012,28(4):264-268.
[10] 刘书成,张常松,张良,等.超临界CO2干燥罗非鱼片的传质模型和数值模拟[J].农业工程学报,2012,28(21):236-242.
[11] KITUU G M,SHITANDA D,KANALI C L,et al.Thin layer drying model for simulating the drying of tilapia fish (Oreochromis niloticus) in a solar tunnel dryer[J].Journal of Food Engineering,2010,98(3):325-331.
[12] CHUKWU O. Influences of drying methods on nutritional properties of tilapia fish (Oreochromis niloticus)[J]. World Journal of Agricultural Sciences, 2009,5(6):600-603.
[13] DUAN Z H,JIANG L N,WANG J L,et al.Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating[J].Food & Bioproducts Processing,2011,89(4):472-476.
[14] 关志强,郑立静,李敏,等.热泵-微波联合干燥罗非鱼片工艺研究[J].食品科学,2012,33(22):58-62.
[15] LAUXMANN M A,BORSANI J,OSORIO S,et al.Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit[J].Plant Cell & Environment,2014,37(3):601-616.
[16] Gallart-Jornet L,Barat J M,Rustad T,et al.Influence of brine concentration on atlantic salmon fillet salting[J]. Journal of Food Engineering,2007,80(1):267-275.
[17] ZHANG P,HU T,FENG S,et al.Effect of high intensity ultrasound on transglutaminase-catalyzed soy protein isolate cold set gel[J].Ultrasonics Sonochemistry,2016,29:380-387.
[18] 刘梦,杨震,史智佳,等.超声辅助腌制处理对牛肉干干燥及理化特性的影响[J].食品科学,2019,40(21):121-126.
[19] RASTOGI N K,RAGHAVARAO K S M S,NIRANJAN K,et al.Recent developments in osmotic dehydration:Methods to enhance mass transfer[J].Trends in Food Science & Technology,2002,13(2):48-59.
[20] ZAFRA-ROJAS Q Y, CRUZ-CASNO N, RAMíRZZ-MORENO E, et al. Effects of ultrasound treatment in purple cactus pear(Opuntia ficusindica)juice[J].Ultrasonics Sonochemistry,2013,20(5):1 283-1 288.
[21] KROKIDA M K,MAROULIS Z B.Effect of microwave drying on some quality properties of dehydrated products[J].Drying Technology,1999,17(3):449-466.
[22] BAYSAL T,ICIER F,ERSUS S,et al.Effects of microwave and infrared drying on the quality of carrot and garlic[J].European Food Research and Technology,2003,218(1):68-73.
[23] 王美霞,刘斌,王超,等.微波干燥过程中苹果切片的热质传递分析[J].食品研究与开发, 2017,38(21):10-14;51.
[24] FERNANDES F A N,RODRIGUES S.Application of ultrasound and ultrasound-assisted osmotic dehydration in drying offruits[J].Drying Technology,2008,26(12):1 509-1 516.
[25] AZOUBEL P M,BAIMA M D A M,AMORIM M D R,et al.Effect of ultrasound on banana cv Pacovan drying kinetics[J].Journal of Food Engineering,2010,97(2):194-198.
[26] 林喜娜,王相友.苹果切片红外辐射干燥模型建立与评价[J].农业机械学报,2010,41(6):128-132.
[27] 张茜,肖红伟,代建武,等.哈密瓜片气体射流冲击干燥特性和干燥模型[J].农业工程学报, 2011, 27(S1):382-388.
[28] 白竣文,王吉亮,肖红伟,等.基于Weibull分布函数的葡萄干燥过程模拟及应用[J].农业工程学报,2013,29(16):278-285.
[29] CORZO O,BRACHO N,PEREIRA A,et al.Weibull distribution for modeling air drying of coroba slices[J].LWT-Food Science and Technology,2008,41(10):2 023-2 028.
[30] URIBE E,VEGA-GÁLVEZ A,DI SCALA K,et al.Characteristics of convective drying of pepino fruit(Solanum muricatum ait.):Application of weibull distribution[J].Food and Bioprocess Technology,2011,4(8):1 349-1 356.
[31] MICHAELBANTL E,KJELLKOLSAKER,TRYGVEMAGNEEIKEVIK.Modification of the Weibull distribution for modeling atmospheric freeze-drying of food[J].Drying Technology,2011,29(10):1 161-1 169.
[32] BELLAGHA S, SAHLI A, FARHAt A,et al. Studies on salting and drying of sardine (Sardinella aurita): Experimental kinetics and modeling[J].Journal of Food Engineering,2007,78(3):947-952.
[33] MIRANDA M,VEGA-GÁLVEZ A,GARCíA P,et al.Effect of temperature on structur-al properties of Aloe vera(Aloe barbadensis Miller)gel and Weibull distribution for modelling drying process[J].Food and Bioproducts Processing,2010,88(2):138-144.
[34] CRANK J.The mathematics of diffusion[M].Oxford,England:Clarendon press,1975.
[35] 王红提,郭康权,李鹏,等.疏解棉秆的微波干燥动力学及能耗分析[J].农业工程学报,2015,31(19):294-301.
[36] 李定金,段振华,刘艳,等.调味山药片真空微波干燥特性及其动力学模型[J].食品科技,2018,43(3):86-92.
[37] MONTEIRO R L,LINK J V,TRIBUZI G,et al.Microwave vacuum drying and multi-flash drying of pumpkin slices[J].Journal of Food Engineering,2018,232:1-10.
[38] 曾目成,毕金峰,陈芹芹,等.基于Weibull分布函数猕猴桃切片微波真空干燥过程模拟及应用[J].中国食品学报,2015,15(6):129-135.
[39] 张卫鹏,高振江,肖红伟,等.基于Weibull函数不同干燥方式下的茯苓干燥特性[J].农业工程学报, 2015, 31(5):317-324.
[40] 丁昌江,吕军,宋智青.基于Weibull分布函数的熟牛肉电流体动力学干燥过程模拟[J].湖北农业科学,2016,55(3):727-731.
[41] 黄敬,朱文学,刘云宏,等.基于Weibull分布函数的百合真空远红外干燥过程模拟及应用[J].食品与机械,2017,33(5):71-76;82.
[42] MARABI A,LIVINGS S,JACOBSON M,et al.Normalized Weibull distribution for modeling rehydration of food particulates[J].European Food Research and Technology,2003,217(4):311-318.
[43] MADAMBA P S,DRISCOLL R H,BUCKLE K A.The thin-layer drying characteristics of garlic slices[J].Journal of Food Engineering,1996,29(1):75-97.
[44] 白竣文,田潇瑜,刘宇婧,等.大野芋薄层干燥特性及收缩动力学模型研究[J].中国食品学报,2018,18(4):124-131.
[45] 黄珊,王修俊,沈畅萱.白萝卜薄层热风干燥特性及其数学模型[J].食品与机械,2017,33(8):137-143;193.
[46] TOGRUL I T, ISPIR A.Effect of effective diffusion coefficient and investigation of shrinkage during osmotic dehydration of apricot[J].Energy Conversion and Management,2007,48(10):2 611-2 621.
[47] 叶欣,黄晓兵,胡洋,等.龙眼果肉微波干燥特性及干燥模型研究[J].食品科技,2012,37(12):67-71.
文章导航

/