研究报告

唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染

  • 金星 ,
  • 贺禹丰 ,
  • 周永华 ,
  • 陈晓华 ,
  • 王刚 ,
  • 赵建新 ,
  • 张灏 ,
  • 陈卫
展开
  • 1(江南大学 食品学院,江苏 无锡,214122)
    2(国家卫生健康委寄生虫病预防与控制技术重点实验室,江苏 无锡,214064)
    3(衡阳师范学院 生命科学与环境学院,湖南 衡阳,421008)
博士研究生(周永华研究员和王刚副教授为共同通讯作者,E-mail:zhouyonghua@jipd.com;wanggang@jiangnan.edu.cn)

收稿日期: 2020-01-07

  网络出版日期: 2020-04-10

基金资助

国家自然科学基金资助项目(31671839,31601444,31301407);湖南省教育厅资助科研项目(15B034);湖南省自然科学基金资助项目(2019JJ50014)

Lactobacillus salivarius CCFM 1054 alleviates the infection ofCampylobacter jejuni in mice by regulating the gut microbiota

  • JIN Xing ,
  • HE Yufeng ,
  • ZHOU Yonghua ,
  • CHEN Xiaohua ,
  • WANG Gang ,
  • ZHAO Jianxin ,
  • ZHANG Hao ,
  • CHEN Wei
Expand
  • 1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
    2(Key Laboratory of Parasitic Disease Prevention and Control Technology for National Health andHealth Commission,Wuxi 214064, China)
    3(College of Life Science and Environment, Hengyang Normal University, Hengyang 421008, China)

Received date: 2020-01-07

  Online published: 2020-04-10

摘要

考察了唾液乳杆菌(Lactobacillus salivarius)CCFM 1054体外培养产酸及发酵上清液抑制空肠弯曲杆菌(Campylobacter jejuni)生长能力、对人工模拟胃肠液中的耐受、对共培养条件下的抑菌能力、对HT-29细胞的粘附以及自我形成生物膜的能力,并以鼠李糖乳杆菌LGG和植物乳杆菌N49作为对比菌株,分别干预空肠弯曲杆菌和弓形虫复合感染的小鼠。结果显示,CCFM 1054能显著改变小鼠肠道菌群的组成,降低空肠弯曲杆菌在小鼠体内的定植率并缓解其感染。肠道菌群变化和乳酸菌拮抗空肠弯曲杆菌相关的体内外特性的相关性分析表明,CCFM 1054对细胞的高粘附性及其较强的生物膜形成能力使得其能在小鼠体内显著改变肠道菌群丰度。

本文引用格式

金星 , 贺禹丰 , 周永华 , 陈晓华 , 王刚 , 赵建新 , 张灏 , 陈卫 . 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020 , 46(5) : 1 -8 . DOI: 10.13995/j.cnki.11-1802/ts.023280

Abstract

In this study, the biological characteristics of Lactobacillus salivarius CCFM 1054 in vitro were evaluated, such as the ability of acid production, the antibacterial ability of free supernatant for Campylobacter jejuni growth, the tolerance to artificial gastrointestinal fluids, the inhibition to co-cultured C. jejuni, the adhesion to HT-29 cell and the ability of biofilms generation. It was founded that CCFM 1054 had strong acid-producing ability and could inhibit the growth of C. jejuni in vitro. At the same time, it had good tolerance under artificial simulated gastrointestinal fluid, high adhesion to HT-29 cells and strong self-film-forming ability. The L. rhamnosus LGG and L. plantarum N49 were used as control strains to CCFM 1054 when administered to C. jejuni and Toxoplasma co-infected mice by gavage. The results showed that CCFM 1054 could significantly change the composition of gut microbiota, such as Firmicutes, Bacteroidetes and Proteobacteria at the phylum level and Campylobacter, Lactobacillus, Pediococcus, Faecoccus, Coprococcus and Unclassified Enterobacteriaceae at the genera level. Changes in gut microbes reduced the colonization of C. jejuni in mice and alleviated the infection of C. jejuni in vivo. The correlation between the changes of gut microbiota and the biological characteristics of lactic acid bacteria in vitro indicated that CCFM 1054's high adhesion to HT-29 cell and strong biofilm-forming ability made it change the gut microbiota in mice significantly.

参考文献

[1] JAVID I. DASTI, A. MALIK Tareen, et al. Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms [J]. International Journal of Medical Microbiology, 2010, 300(4): 205-211.
[2] ELAINE S, ROBERT M H, FREDERICK J A, et al. Foodborne illness acquired in the united states—major pathogens [J]. Emerging Infectious Diseases, 2011, 1(17): 7-15.
[3] JINlIN Huang, XIAOQI Zang, WEIHUA Zhai, et al. Campylobacter spp. in chicken-slaughtering operations: A risk assessment of human campylobacteriosis in East China [J]. Food Control, 2018, 86: 249-256.
[4] KATE O P, CHRISTA L F, WALKER R E B. Quantifying the association between Campylobacter infection and guillain-barré syndrome: A systematic review [J]. J Health Popul Nutr, 2010, 28(6): 545-552.
[5] SAHIN O, KASSEM I, SHEN Z, et al. Campylobacter in poultry: ecology and potential interventions [J]. Avian Dis, 2015, 59:185-200.
[6] MOORE J E, BARTON M D, BLAIR I.S, et al. The epidemiology of antibiotic resistance in Campylobacter [J]. Microbes In-fect, 2006, 8(7): 1955-1966.
[7] PADUNGTON P, KANEENE J B. Campylobacter spp. in human, chickens, pigs and their antimicrobial resistance [J]. J Vet Med Sci,2003, 65(2): 161-170.
[8] SLUTSKER L, RIES A A, GREENE K D, et al. Escherichia coli O157: H7 diarrhea in the United States: clinical and epi-demiologic features[J]. Annals of Internal Medicine, 1997, 126: 505-513.
[9] NISHIYAMA K, SETO Y, YOSHIOKA K, et al. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni [J]. PLOS ONE, 2014, 9(9): 1-9.
[10] COLE K, FARNELL M B, DONOGHUE A M, et al. Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults [J]. Poultry Science, 2016, 85(9): 1 570-1 575.
[11] RYAN K A, DALY P, LI Y, et al. Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli [J]. Journal of Antimicrobial Chemotherapy, 2008, 61(4): 831-834.
[12] SGOURAS D, MARAGKOUDAKIS P, PETRAKI K, et al. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota [J]. Applied and Environmental Microbiology, 2004, 70(1):518-526.
[13] 姚沛琳. 乳酸菌抑制变异链球生物膜形成的研究 [D]. 无锡: 江南大学, 2015.
[14] 刘妍. 桦褐孔菌多糖对弓形虫感染小鼠病理学影响的研究 [D]. 延吉: 延边大学, 2011.
[15] WANG G, HE Y F, ZHOU Y H, et al. The effect of co-infection of food-borne pathogenic bacteria on the progression of Campylobacter jejuni infection in mice [J]. Frontiers in Microbiology, 2018, 9: 1-13.
[16] MAKRAS L, TRIANTAFYLLOU V, FAYLO Messaoudi D, et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar typhimurium reveals a role for lactic acid and other inhibitory compounds [J]. Research in Microbiology, 2006, 157(3): 241-247.
[17] CHAVEERACH P, KEUZENKAMP D A, URLINGS H A, et al. In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed [J]. Poultry Science, 2002, 81(5): 621-628.
[18] HUANG Y, ADAMS M C. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria [J]. International Journal of Food Microbiology, 2004, 91(3): 253-260.
[19] 辛羚, 郭本恒, 吴正钧,等. 3株乳杆菌在模拟消化环境中存活性能的研究 [J]. 中国乳品工业, 2005, 33(5): 15-17.
[20] 赵煜. 具有拮抗空肠弯曲杆菌功效的乳酸菌的研究[D]. 无锡: 江南大学, 2012.
[21] FIGUEIRA C P, CRODA J, CHOY H A, et al. Heterologous expression of pathogen-specific genes ligAand ligBin the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin [J]. BMC Microbiology, 2011, 11(1): 129-136.
[22] BURGAIN J, GAIANI C, FRANCIUS G, et al. In vitro interactions between probiotic bacteria and milk proteins probed by atomic force microscopy [J]. Colloids & Surfaces B Biointerfaces, 2013, 104: 153-159.
[23] ADLERBERTH I, AHRNE S, JOHANSSON M L, et al. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29 [J]. Applied and Environmental Microbiology, 1996, 62(7): 2 244-2 251.
[24] TUOMOLA E M, OUWEHAND A C, SALMINEN S J, et al. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures [J]. International Journal of Food Microbiology, 1999, 26(2): 137-142.
[25] TUOMOLA E M, SALMINEN S J. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures [J]. International Journal of Food Microbiology, 1998, 41(1): 45-51.
[26] 王坤, 闫颖娟, 姜梅, 等. 保加利亚乳杆菌和嗜热链球菌生物膜形成研究 [J]. 食品科学, 2011, 32(19): 184-187.
[27] EL-ADWI H, EL-SHEEKH M, KHALIL M, et al. Lactic acid bacterial extracts as anti-Helicobacter pylori: a molecular approach [J]. Irish Journal of Medical Science, 2013, 182(3): 439-452.
[28] HAAG L M, FISCHER A, OTTO B, et al. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice [J]. PloS One, 2012, 7(5): 1-13.
[29] CHANG C, MILLER J F. Campylobacter jejuni colonization of mice with limited enteric flora [J]. Infect Immun, 2006, 74(9): 5 261-5 271.
[30] STAHL M, RIES J, VERMEULEN J, et al. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for toll-like receptor signaling during infection [J]. PLoS Pathog, 2014, 10(7): 1-16.
[31] PHILLIP T, KELSEY A, JULIA A, et al. Transplanted human fecal microbiota enhanced Guillain Barré syndrome autoantibody responses after Campylobacter jejuni infection in C57BL/6 mice [J]. Microbiome, 2017, 5: 1-22.
[32] HAGHIGHI H R, GONG J, GYLES C I, et al. Modulation of antibody-mediated immune response by probiotics in chickens [J]. Clin Diagn Lab Immunol, 2005, 12(12): 1387-1392.
[33] WANG W N, BEAI R K. Egional and global chan-ges in TCR αββ inlll repertoires in the gut are dependent upon the complexity of the enteric microflora [J]. Dev Comp Immunol, 2010, 34(4): 406-417.
[34] CORRIDONI D, PASTORELLI L, MATTIOLI B, et al. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism [J]. PloS One, 2012, 7(7): 1-10.
[35] DAVID L A, MATERNA A C, FRIDMAN J, et al. Host lifestyle affects human microbiota on daily timescales [J]. Genome Biol, 2014, 15: 1-15.
[36] SAKARIDIS I, ELLIS R J, CAWTHRAW S A, et al. Investigating the association between the caecal microbiomes of broilers and Campylobacter burden [J]. Frontiers in Microbiology, 2018, 9: 1-9.
[37] FORDER R E A, HOWARTH G S, TIVEY D R, et al. Bacterial modulation of small intestinal goblet cells and mucin composition during early post-hatch development of poulty [J]. Poult Sci, 2007, 86(11): 2 396-2 403.
[38] DERRIEN M, VAN P. Mucin-bacterial interactions in the human oral cavity and digestive tract [J]. Gut Microbes, 2010, 1(4): 254-268.
[39] GUERRIERI E, NIEDERHAUSERN S D, MESSI P, et al. Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model [J]. Food Control, 2009, 20(9):861-865.
[40] OLNEY J W, ADAMO N J, RATHER A. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties [J].Food Microbiology, 2016, 53(Pt A):51-59.
文章导航

/