研究报告

黄芪多糖的分离、结构表征及益生活性研究

  • 刘卫宝 ,
  • 余讯 ,
  • 徐静静 ,
  • 詹晓北 ,
  • 张洪涛 ,
  • 朱莉
展开
  • 1(糖化学与生物技术教育部重点实验室(江南大学),江苏 无锡,214122);
    2(江南大学 生物工程学院,江苏 无锡,214122);
    3(南京医科大学附属无锡第二医院影像科,江苏 无锡,214002)
硕士研究生(詹晓北教授为通讯作者,E-mail: xbzhan@yahoo.com)

收稿日期: 2019-12-04

  网络出版日期: 2020-05-19

基金资助

国家重点研发技术(2017YFD0400302)

Isolation, structure characterization and prebiotic activity of polysaccharides from Astragalus membranaceus

  • LIU Weibao ,
  • YU Xun ,
  • XU Jingjing ,
  • ZHAN Xiaobei ,
  • ZHANG Hongtao ,
  • ZHU Li
Expand
  • 1(Key Laboratory of Carbohydrate Chemistry and Biotechnology(Jiangnan University), Ministry of Education, Wuxi 214122,China);
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China);
    3(Department of Radiology,Wuxi Second Hospital Affiliated to Nanjing Medical University,Wuxi 214002,China)

Received date: 2019-12-04

  Online published: 2020-05-19

摘要

对从蒙古黄芪中分离纯化获得的APS-1和APS-2进行结构表征,同时考察黄芪粗多糖(Astragalus crude polysaccharide,APS)的益生活性。运用高效凝胶过滤色谱(high performance size exclusion chromatography, HPGFC)、离子色谱(ion chromatography, IC)、红外(infrared spectroscopy, FT-IR)和核磁(nuclear magnetic resonance spectros copy, 1H-NMR)技术分析APS-1和APS-2的分子质量、单糖组成和糖苷键类型。利用人体粪便体外发酵APS,通过气相色谱法分析短链脂肪酸(short-chain fatty acids, SCFA)的产生来评价APS的益生活性。结果显示, APS-1和APS-2分子质量分别为38.4和5.2 kDa。APS-1主要由半乳糖和葡萄糖组成,摩尔比为1:49.76。APS-2主要由鼠李糖、半乳糖和葡萄糖组成,摩尔比为1:2.99:16.26。APS-1以α-糖苷键为主,APS-2同时包含α-糖苷键和β-糖苷键。当APS的添加量为5 g/L时,发酵培养基的pH从7.49(0 h)降至5.88(48 h),总SCFA、乙酸、丙酸和丁酸的含量均显著增加。结果表明,APS被肠道微生物代谢后可以产生对人体具有良好益生活性的短链脂肪酸。

本文引用格式

刘卫宝 , 余讯 , 徐静静 , 詹晓北 , 张洪涛 , 朱莉 . 黄芪多糖的分离、结构表征及益生活性研究[J]. 食品与发酵工业, 2020 , 46(7) : 50 -56 . DOI: 10.13995/j.cnki.11-1802/ts.022967

Abstract

A water-soluble crude polysaccharide named as APS was isolated from the roots of Mongolia Astragalus membranaceus by hot water extraction and its in vitro prebiotic activity was tested. After purification, two main polysaccharides (APS-1 and APS-2) with relative molecular masses of 38.4 kDa and 5.2 kDa were collected. Their structural characteristics were investigated by high performance gel filtration chromatography (HPGFC), ion chromatography (IC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy(1H-NMR). Based on the data obtained, APS-1 was mainly composed of galactose and glucose with a molar ratio of 1:49.76. APS-2 was mainly composed of rhamnose, galactose and glucose with a molar ratio of 1:2.99:16.26. APS-1 was found to be mainly composed of α-type glycosidic bonds while APS-2 contained both α-type glycosidic bonds and β-type glycosidic bonds. When APS (5 g/L) was fermented by human feces, the pH of the medium decreased from 7.49 (0 h) to 5.88 (48 h), and the contents of total short-chain fatty acids (SCFA), acetic acid, propionic acid, and butyric acid were all significantly increased. The results showed that APS had great prebiotic activity to human intestinal microbes.

参考文献

[1] LI J H, JIA H J,CAI X H,et al. An integrated catalog of reference genes in the human gut microbiome[J]. Nature Biotechnology, 2014, 32(8): 834-841.
[2] 李蒙子,邱芳驰,陈倩,等.中药多糖调节肠道菌群研究进展[J]. 中国食物与营养, 2017, 23(12): 13-16.
[3] GIBSON G R, PROBERT H M, LOO J V, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics[J]. Nutrition Research Reviews, 2004, 17(2): 259-275.
[4] 祁玉丽,高坤,孙印石,等.植物多糖对肠道微生态的作用研究进展[J].中国微生态学杂志, 2018, 30(4): 489-494.
[5] LAYDEN B T, ANGUEIRA A R, BRODSKY M, et al. Short chain fatty acids and their receptors: new metabolic targets[J]. Translational Research, 2013, 161(3): 131-140.
[6] GULLON B, GULLON P, TAVARIA F, et al. In vitro assessment of the prebiotic potential of Aloe vera mucilage and its impact on the human microbiota[J]. Food Function, 2015, 6(2): 525-531.
[7] GAO B B, WANG R J,PENG Y,et al. Effects of a homogeneous polysaccharide from Sijunzi decoction on human intestinal microbes and short chain fatty acids in vitro[J]. Journal of Ethnopharmacology, 2018, 224(2018): 465-473.
[8] CHEN C, HUANG Q,FU X, et al.In vitro fermentation of mulberry fruit polysacchrides by human fecal inocula and impact on microbiota[J].Food Function,2016,7(11):4 637-4 643.
[9] FU Y S, ZHANG J N, CHEN K N, et al. An in vitro fermentation study on the effects of Dendrobium officinale polysaccharides on human intestinal microbiota from fecal microbiota transplantation donors[J]. Journal of Functional Foods, 2019, 53: 44-53.
[10] NERURKAR P V, MIYAMOTO J, WATANABE K, et al. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice[J]. Plos One, 2018, 13(4): e0196579.
[11] LUO J, ZHANG C, LIU R, et al. Ganoderma lucidum polysaccharide alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene expression of colonic epithelial cells[J]. Journal of Functional Foods, 2018, 47: 127-135.
[12] CHEN R Z, TAN L, JIN C G, et al. Extraction, isolation, characterization and antioxidant activity of polysaccharides from Astragalus membranaceus[J]. Industrial Crops and Products, 2015, 77: 434-443.
[13] WANG Y F, YANG X F, CHENG B, et al. Protective effect of Astragalus polysaccharides on ATP binding cassette transporter A1 in THP-1 derived foam cells exposed to tumor necrosis factor-alpha[J]. Phytotherapy research, 2010, 24(3): 393-398.
[14] ZHAO L H, MA Z X, ZHU J, et al. Characterization of polysaccharide from Astragalus radix as the macrophage stimulator[J]. Cell Immunol, 2011, 271(2): 329-334.
[15] 唐雨薇,张宇,王宇亮,等.黄芪多糖分离与结构特征分析[J]. 时珍国医国药,2014,25(5):1 097-1 100.
[16] 夏泉,刘钢,葛朝亮,等. Sevag法去除黄芪粗多糖中蛋白质成分的研究[J].安徽医药,2007, 11(12): 1 069-1 071.
[17] YAN H, XIE Y, SUN S, et al.Chemical analysis of Astragalus mongholicus polysaccharides and antioxidant activity of the polysaccharides[J].Carbohydrate Polymers,2010,82(3): 636-640.
[18] PHAM T, TEOH K T, SAVARY B J,et al.In vitro fermentation patterns of rice bran components by human gut microbiota[J]. Nutrients, 2017, 9(11):1 237.
[19] LAM K L, KO K C, LI X, et al.In vitro infant faecal fermentation of low viscosity barley beta-glucan and its acid hydrolyzed derivatives: evaluation of their potential as novel prebiotics[J]. Molecules, 2019, 24(828):doi:10.3390/molecules 24050828.
[20] LI S G, ZHANG Y Q, Characterization and renal protective effect of a polysaccharide from Astragalus membranaceus[J]. Carbohydrate Polymers,2009,78(2):343-348.
[21] 李宏全,赵万国,吕小虎等,黄芪中一种新杂聚多糖的理化分析[J]. 中国药学杂志,2009,44(9):654-657.
[22] LIAO J Z, LI C Y, HUANG J, et al. Structure characterization of honey-processed Astragalus polysaccharides and its anti-inflammatory activity in vitro[J]. Molecules, 2018,23(1):168.
[23] LIU Y M, LIU W, LI J, et al. A polysaccharide extracted from Astragalus membranaceus residue improves cognitive dysfunction by altering gut microbiota in diabetic mice[J]. Carbohydrate polymers, 2019, 205: 500-512.
[24] WIOLETA W A K, LUCYNA D, JERZY H, et al. Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity[J]. BMC Biotechnology, 2013, 13(1): 10.
[25] PHUKAN M M, CHUTIA R S, KONWAR B K, et al.Microalgae chlorella as a potential bio-energy feedstock[J]. Applied Energy, 2011, 88(10): 3 307-3 312.
[26] LI R, CHEN W C, WANG W P, et al. Extraction, characterization of Astragalus polysaccharides and its immune modulating activities in rats with gastric cancer[J]. Carbohydrate polymers, 2009, 78(4): 738-742.
[27] SCHENZEL K, FISCHER S. FT Raman spectroscopy-a rapid analytical tool for detecting the transformation of cellulose polymorphs[J]. Cellulose, 2001, 8(1): 49-57.
[28] FU J, HUANG L F, ZHANG H T, et al. Structural features of a polysaccharide from Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao[J]. Journal of Asian Natural Products Research,2013,15(6):687-692.
[29] OLIVERIRA D L, COSTABILE A, WILBEY R A, et al. In vitro evaluation of the fermentation properties and potential prebiotic activity of caprine cheese whey oligosaccharides in batch culture systems[J]. Biofactors, 2012, 38(6): 440-449.
[30] KOK N M D A N. Effects of fructans-type prebiotics on lipid metabolism[J]. American Society for Clinical Nutrition, 2001, 73(2): 456S-458S.
[31] WE R. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man[J]. Gut, 1980, 21: 793-798.
[32] LAPARRA J M, SANZ Y. Interactions of gut microbiota with functional food components and nutraceuticals[J]. Pharmacological Research, 2010, 61(3): 219-225.
文章导航

/