研究报告

不同分子质量魔芋甘露聚糖的制备及功效活性分析

  • 董振香 ,
  • 顾秋亚 ,
  • 李丹晨 ,
  • 孙驰翔 ,
  • 余晓斌
展开
  • (江南大学 生物工程学院,工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
硕士研究生(余晓斌教授为通讯作者,E-mail:xbyu@jiangnan.edu.cn)

收稿日期: 2019-11-27

  网络出版日期: 2020-05-20

基金资助

国家轻工技术与工程一流学科自主课题资助(LI-TE2018-11)

Preparation and active component analysis of konjac mannans with different molecular weights

  • DONG Zhenxiang ,
  • GU Qiuya ,
  • LI Danchen ,
  • SUN Chixiang ,
  • YU Xiaobin
Expand
  • (School of Biotechnology, Jiangnan University, The Key Laboratory of Industrial Biotechnology, Ministry of Education (Jiangnan University), Wuxi 214122, China)

Received date: 2019-11-27

  Online published: 2020-05-20

摘要

该研究旨在探索不同分子质量魔芋甘露聚糖的抗氧化活性,促进乳酸菌生长及发酵产酸的差异。控制水解条件得到水解率为43.56%的样品,经过0.2 kDa透析袋、3 kDa、5 kDa超滤膜分离得到相对分子质量为200~3 000、3 000~5 000以及大于5 000的不同样品,对其进行抗氧化以及促乳酸菌生长实验。结果表明,ORAC活性结果显示相对分子质量在3 000~5 000样品抗氧化能力最强,抗氧化活性是甘露糖的58.2倍,是葡萄糖的95.93倍。6种乳酸菌生长发酵实验表明,乳酸菌利用相对分子质量为787的样品延滞期较长但生物量变化最大,乳酸含量最高。由此可见,部分降解魔芋甘露聚糖具有良好的益生元功效,这为探究不同聚合度魔芋低聚糖功效差异提供依据。

本文引用格式

董振香 , 顾秋亚 , 李丹晨 , 孙驰翔 , 余晓斌 . 不同分子质量魔芋甘露聚糖的制备及功效活性分析[J]. 食品与发酵工业, 2020 , 46(8) : 48 -53 . DOI: 10.13995/j.cnki.11-1802/ts.022900

Abstract

The aim of this study was to explore the effects of konjac mannans with different molecular weights on antioxidant ability, the promotion of the growth of lactic acid bacteria and its production ability of fermentation. Samples with a hydrolysis rate of 43.56% were obtained by controlling the hydrolysis conditions. Dialysis and ultrafiltration were used to obtain different samples with molecular weights which were 200-3 000, 3 000-5 000, and more than 5 000. They were tested for antioxidant ability and the promotion of lactic acid bacteria fermentation. The results revealed that the molecular weight of 3 000-5 000 had the strongest antioxidant activity, which was 58.2 times that of mannose and 95.93 times that of glucose. After 48 h of lactic acid bacteria fermentation, low molecular weight KGM could obviously stimulate the growth of lactic acid bacteria. Especially the sample with a molecular weight of 787 could more effectively promote lactic acid bacteria growth and the production of lactic acid. This study provides a basis for exploring the difference in efficacy of konjac oligosaccharides with different degrees of polymerization.

参考文献

[1] KOBAYASHI S, TSUJIHATA S, HIBI N, et al. Preparation and rheological characterization of carboxymethyl konjac glucomannan[J]. Food Hydrocolloids,2002,16(4):289-294.
[2] IGLESIAS-OTERO MA, BORDERÍAS J, TOVAR C A. Use of Konjac glucomannan as additive to reinforce the gels from low-quality squid surimi[J]. Journal of Food Engineering,2010,101(3):281-288.
[3] 骆薇, 张迎庆. 益生元魔芋葡甘低聚糖研究进展[J]. 食品与药品, 2014,16(4):296-298.
[4] 龙力.功能性低聚糖产业及市场发展分析[C].北海:全国淀粉糖、多元醇技术与发展研讨会,2013:11-23.
[5] CONNOLLY M L, LOVEGROVE J A, TUOHY K M. Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota[J]. Journal of Functional Foods, 2010, 2(3):219-224.
[6] 张琳. 魔芋低聚糖的制备及其性质研究[D].长春:吉林大学, 2013.
[7] AL-GHAZZEWI F H, TESTER R F. Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria[J]. Journal of the Science of Food & Agriculture, 2012, 92(11):119-127.
[8] TAE-HWAN J, HYEON P J, WOO-MIN J, et al. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway[J]. Nutrition Research and Practice, 2015, 9(4):343-352.
[9] 王敏,帅天罡,秦清娟.魔芋葡甘低聚糖对大鼠肠道环境的影响[J].食品科学, 2016, 524(7):221-227.
[10] OMAR J M, CHAN Y M, JONES M L, et al. Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons[J]. Journal of Functional Foods, 2013, 5(1):116-123.
[11] TESTER R F, AL-GHAZZEWI F H. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan[J]. Journal of the Science of Food and Agriculture, 2015, 96(10):3 283-3 291.
[12] 侯占伟. 魔芋葡甘聚糖的化学改性及其性质研究[D].武汉:武汉理工大学, 2008.
[13] ZHANG H, YOSHIMURA M, NISHINARI K, et al. Gelation behaviour of konjac glucomannan with different molecular weights[J]. Biopolymers, 2001, 59(1):38-50.
[14] 徐琴音, 唐少锋, 唐文娟. 鲜魔芋生产药用特定分子质量葡甘低聚糖的工艺方法:中国,CN201210130077.1[P].2012-09-19.
[15] QIAOYING S, TING L, WEI X, et al. Preparation, structure analysis and ACE inhibitory activity of konjac oligosaccharide[J]. Industrial Crops and Products, 2018, 124(11):812-821.
[16] YANG J, VITTORI N, WANG W, et al. Molecular weight distribution and fermentation of mechanically pre-treated konjac enzymatic hydrolysates[J]. Carbohydrate Polymers, 2017, 159(24):58-65.
[17] 赵梅,王春娟,董运海,等. 重组β-甘露聚糖酶制备低聚葡甘露糖工艺条件的优化[J]. 食品与生物技术学报2016,(7):704-708.
[18] 陈秀霞,尹业师,朱立颖,等. 益生菌及人体肠道菌群对低聚甘露糖的降解[J]. 中国微生态学杂志2016,(7):745-750.
[19] 龚芳红, 贺松, 张德纯,等. 双歧杆菌发酵果蔬汁中低聚果糖的高效液相色谱法分析[J]. 中国微生态学杂志, 2010, 22(6):489-491.
[20] DU Z, LIU J, ZHANG D, et al. Individual and synergistic antioxidant effects of dipeptides in in vitro antioxidant evaluation systems[J]. International Journal of Peptide Research and Therapeutics, 2019,25(1):391-399.
[21] 严欢, 韩飞, 李慕春. ORAC法对薰衣草非精油组分的抗氧化活性研究[J].食品科技,2018,43(12):282-285.
[22] MEI X, DONG-SHENG L, BIN L, et al. Comparative study on molecular weight of konjac glucomannan by gel permeation chromatography-laser light scattering-refractive index and laser light-scattering methods[J]. Journal of Spectroscopy, 2017,17:1-4.
[23] ZIA F, ZIA K M, ZUBER M, et al. Glucomannan based polyurethanes: A critical short review of recent advances and future perspectives[J]. International Journal of Biological Macromolecules, 2016,87:229-236.
[24] ALBRECHT S,VAN MUISWINKELGCJ, XU J,et al. Enzymatic production and characterization of konjac glucomannan oligosaccharides[J]. Journal of Agricultural and Food Chemistry, 2011, 59(23):12 658-12 666.
[25] FARAGE HASHMI AL-GHAZZEWI, KHANNA S, TESTER R F, et al. The potential use of hydrolysed konjac glucomannan as a prebiotic[J]. Journal of the Science of Food and Agriculture, 2007, 87(9):1 758-1 766.
文章导航

/