研究报告

采后失水对葡萄皮中酚类物质及细胞超微结构的影响

  • 郑万财 ,
  • 白羽嘉 ,
  • 冯作山 ,
  • 阿衣古丽·阿力木 ,
  • 丁泽人 ,
  • 胡卫成
展开
  • 1 (新疆农业大学 林学与园艺学院,新疆 乌鲁木齐,830052)
    2 (新疆农业大学 食品科学与药学学院,新疆 乌鲁木齐 830052)
    3 (新疆果品采后科学与技术重点实验室,新疆 乌鲁木齐,830052)
博士研究生(冯作山教授和白羽嘉副教授为共同通讯作者,E-mail:fengzuoshan@126.com,saintbyj@126.com)

收稿日期: 2019-11-06

  网络出版日期: 2020-05-20

基金资助

2016年中国农业大学-新疆农业大学科研合作基金项目(2017TC010)

Effect of postharvest dehydration on phenolics and cell ultrastructure of grape skin

  • ZHENG Wancai ,
  • BAI Yujia ,
  • FENG Zuoshan ,
  • AYGUL Alim ,
  • DING Zeren ,
  • HU Weicheng
Expand
  • 1 (College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi 830052, China)
    2 (College of Food Science and Pharmacology, Xinjiang Agricultural University Urumqi, 830052, China)
    3 (Xinjiang Key Labratory for Postharvest Science and Techology of Fruits,Urumqi 830052,China)

Received date: 2019-11-06

  Online published: 2020-05-20

摘要

该文研究采后失水与葡萄皮中酚类及细胞超微结构的变化,明确葡萄采后的加工及酿造品质。通过葡萄采后不同温度失水处理,分析采后失水对葡萄皮结构与酚类物质的影响。结果表明,采后新鲜葡萄果实可溶性固形物为28.1 °Brix,25 ℃和45 ℃失水72 h后可溶性固形物为32.4 °Brix、41.1 °Brix,不同温度处理的葡萄失水导致其质量不断下降、可溶性固形物含量升高;采后新鲜葡萄果皮中总酚、总花色苷、总黄酮、单宁含量分别为21.70、3.38、19.23、18.33 mg/g,25 ℃处理72 h后分别为27.97、2.61、27.58、18.84 mg/g,45 ℃处理72 h后分别为14.32、0.73、13.33、11.48 mg/g,葡萄皮中总酚、总花色苷、总黄酮、单宁含量均整体呈现不断减少的趋势;葡萄采后失水造成葡萄皮皱缩、破裂、细胞器消失、细胞发生凋亡。葡萄采后失水使酚类物质与氧气接触发生反应,较高失水温度加速了葡萄采后失水速率,失水越快酚类物质降解越显著。葡萄采后失水对葡萄皮酚类物质及细胞超微结构变化的研究可为甜型、半甜型葡萄酒的酿造提供一定的理论依据。

本文引用格式

郑万财 , 白羽嘉 , 冯作山 , 阿衣古丽·阿力木 , 丁泽人 , 胡卫成 . 采后失水对葡萄皮中酚类物质及细胞超微结构的影响[J]. 食品与发酵工业, 2020 , 46(8) : 72 -77 . DOI: 10.13995/j.cnki.11-1802/ts.022725

Abstract

Postharvest dehydration and changes in phenols and cell ultrastructure of grape skins were studied in order to better understand its effect to the processing and brewing quality of grapes. Postharvest grapes were dehydrated under different temperatures to analyze the change of the skin structure and phenolic substances. The results indicated that the soluble solid content of the postharvest fresh grapes samples was 28.1 °Brix. But, after dehydration at 25 ℃ and 45 ℃ for 72 hours, the soluble solid content rose to 32.4 °Brix and 41.1 °Brix respectively. The total amount of phenolics, anthocyanin, flavonoids, and tannin in the postharvest fresh grapes samples was 21.70, 3.38 , 19.23 mg/g, and 18.33 mg/g, which turned to 27.97, 2.61, 27.58 mg/g, and 18.84 mg/g, respectively after treatment at 25 ℃ for 72 hours. And these components further dropped significantly to 14.32, 0.73, 13.33, and 11.48 mg/g after treatment for 72 hours at 45 ℃. After harvest, the dehydration of grapes resulted in skin shrinkage, ruptures, disappearance of organelles, and apoptosis. Dehydration also caused phenolic substances to react with oxygen. High temperatures could accelerate dehydration which led to more significant degradation of phenolic substances. The research into the impact of postharvest dehydration on phenolics and cell ultrastructure of grape skin provides a theoretical basis for the brewing of sweet and semi-sweet wine.

参考文献

[1] 褚晓泉, 朱君伟, 穆维松, 等. 我国葡萄酒产业现状及布局分析[J]. 中外葡萄与葡萄酒, 2019(3):71-75.
[2] 张轲, 袁琳, 杨兴元, 等. 天山北麓产区5个不同红色酿酒葡萄品种非花色苷酚类物质的积累特性[J]. 现代食品科技, 2019, 35(4):122-129.
[3] 唐虎利, 张振文, 孙莹, 等. 新疆玛纳斯县赤霞珠葡萄最佳采收期的研究[J]. 中国酿造, 2009, 28(10):78-81.
[4] HARDIE W J, O'BRIEN T P, JAUDZEMS V G. Morphology, anatomy and development of the pericarp after anthesis in grape, Vitis vinifera L[J]. Australian Journal of Grape and Wine Research, 2008, 2(2):97-142.
[5] PUBLISHING B. Australian journal of grape and wine research[J]. Australian Journal of Grape & Wine Research Pp, 2011, 65(6):854-856.
[6] BOULTON R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review[J]. American Journal of Enology and Viticulture, 2001, 52:67-87.
[7] SIVILOTTI, FALCHI P, HERRERA R, et al. Combined effects of early season leaf removal and climatic conditions on aroma precursors in Sauvignon blanc grapes[J]. Journal of Agricultural and Food Chemistry, 2017, 65(38):8 426-8 434.
[8] ZHANG X K, HE F, ZHANG B, et al. The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging[J]. Food Research International, 2018, 106:568-579.
[9] 刘峰娟, 冯作山, 孟阳, 等. 脱水速度对“无核白”葡萄果皮褐变和细胞超微结构的影响[J]. 食品科学, 2016, 37(6):227-232.
[10] SAQUET A A, STREIF, BANGERTH. Energy metabolism and membrane lipid alterations in relation to brown heart development in 'Conference' pears during delayed controlled atmosphere storage[J]. Postharvest Biology & Technology, 2003, 30(2):123-132.
[11] BONADA M, VíCTOR SADRAS, MORAN M, et al. Elevated temperature and water stress accelerate mesocarp cell death and shrivelling, and decouple sensory traits in Shiraz berries[J]. Irrigation Science, 2013, 31(6):1 317-1 331.
[12] PANCERI C P, BORDIGNON-LUIZ M T. Impact of grape dehydration process on the phenolic composition of wines during bottle ageing[J]. Journal of Food Biochemistry, 2017,41(6): e12 417.
[13] LÁPEZ JÉSSICA, VEGA-GÓLVEZ ANTONIO, BILBAO-SAINZ C, et al. Influence of vacuum drying temperature on: Physico-chemical composition and antioxidant properties of murta berries[J]. Journal of Food Process Engineering, 2017,40(5): e12 569.
[14] MA T T, SUN X Y, GAO G T, et al. Phenolic characterisation and antioxidant capacity of young wines made from different grape varieties grown in helanshan donglu wine zone(China)[J]. South African Journal of Enology & Viticulture, 2016, 35(2):321-331.
[15] URCAN D E, GIACOSA S, TORCHIO F, et al. ‘Fortified’ wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.)[J]. Food Chemistry, 2017, 219:346-356.
[16] MENCARELLI F, TONUTTI P, MENCARELLI F, et al. Sweet, reinforced and fortified wines: Grape biochemistry, technology and vinification[J]. Journal of Wine Research, 2013, 26(1):64-66.
[17] 王福荣. 酿酒分析与检测[M]. 北京: 化学工业出版社, 2012.
[18] 冯建光, 谷文英. 葡萄皮红色素的示差法测定[J]. 食品工业科技, 2002(9):85-86.
[19] HOSSAIN M A, KALBANI M S A A, FARSI S A J A, et al. Comparative study of total phenolics, flavonoids contents and evaluation of antioxidant and antimicrobial activities of different polarities fruits crude extracts of Datura metel L.[J]. Asian Pacific Journal of Tropical Disease, 2014, 4(5):378-383.
[20] MENCARELLI F, BELLINCONTRO A, NICOLETTI I, et al. Chemical and biochemical change of healthy phenolic fractions in winegrape by means of postharvest dehydration[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13):7 557-7 564.
[21] CHAPPLE C. Genetic Characterization of Secondary Metabolism in Arabidopsis[M] Weat Lafayette:Department of Binchemisty Purdue University, 1994.
[22] SOPHIE P, ENRICO P, ALBERTO N, et al. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3,5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin[J]. BMC Genomics, 2006, 7(1):12.
[23] 陈健初. 杨梅汁花色苷稳定性、澄清技术及抗氧化特性研究[D]. 杭州:浙江大学, 2005.
[24] FURTADO P, FIGUEIREDO P, NEVES H C D, et al. Photochemical and thermal degradation of anthocyanidins[J]. Journal of Photochemistry & Photobiology A Chemistry, 1993, 75(2):113-118.
[25] 李晓丽, 王成, 朱靖蓉, 等. 干制速度对无核白葡萄酚类物质和多酚氧化酶细胞化学定位及褐变的影响[J]. 食品工业科技, 2019(5):99-107.
[26] 陶永胜, 李华, 王华. 葡萄酒中主要的黄酮类化合物及其分析方法[J]. 中外葡萄与葡萄酒, 2001(4):14-17.
[27] CARTER D R, CHEESEMAN J M. The effects of external NaCl on thylakoid stacking in lettuce plants[J]. Plant Cell and Environment, 1993, 16(2):215-222.
[28] 孙龙华, 简令成. 逆境中沙冬青叶片细胞叶绿体的结构(简报)[J]. 实验生物学报, 1995(4):427-396.
[29] ROGIERS S Y, HATFIELD J M, JAUDZEMS V G, et al. Grape berry cv. Shiraz epicuticular wax and transpiration during ripening and preharvest weight loss[J]. American Journal of Enology and Viticulture, 2004, 55(2):121-127.
[30] BONADA M, SADRAS V O, FUENTES S. Effect of elevated temperature on the onset and rate of mesocarp cell death in berries of Shiraz and Chardonnay and its relationship with berry shrivel[J]. Australian Journal of Grape and Wine Research, 2013, 19(1):87-94.
文章导航

/