研究报告

sn-2长链多不饱和脂肪酸单甘酯的制备及其影响因素研究

  • 王强 ,
  • 谢跃杰 ,
  • 李园园 ,
  • 魏华恒 ,
  • 贺稚非 ,
  • 李洪军
展开
  • 1(西南大学 食品科学学院,重庆,400715)
    2(重庆第二师范学院,脂质资源与儿童日化品协同创新中心,重庆,400067)
博士研究生(李洪军教授为通讯作者,E-mail:983362225@qq.com)

收稿日期: 2020-02-13

  网络出版日期: 2020-06-17

基金资助

国家自然科学基金(31871728);重庆市特色食品工程技术研究中心能力提升项目(cstc2014pt-gc8001);重庆第二师范学院协同创新平台建设项目(2017XJPT01);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0824);重庆第二师范学院创新团队支持计划资助项目(KYC-cxtd03-20141002)

Preparation of sn-2 long-chain polyunsaturated fatty acid monoglyceride and its influencing factors

  • WANG Qiang ,
  • XIE Yuejie ,
  • LI Yuanyuan ,
  • WEI Huaheng ,
  • HE Zhifei ,
  • LI Hongjun
Expand
  • 1(College of Food Science, Southwest University, Chongqing 400715, China)
    2(Cooperative Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China)

Received date: 2020-02-13

  Online published: 2020-06-17

摘要

该研究以海藻油为原料,通过醇解法合成了2-二十二碳六烯基单甘脂(2D-MAG),并分别对脂肪酶种类、藻油与乙醇的底物摩尔比、反应时间、反应温度和脂肪酶利用次数等影响因素进行了研究。结果表明,藻油中sn-2位脂肪酸以n-3 PUFA (62.26%)含量最多,是合成sn-2长链结构脂2D-MAG较为理想的原料。催化藻油合成脂肪酶的催化活性由高到低依次为:Lipozyme RM IM >Novozym 435(质量分数)>Lipozyme TL IM >Newlase F > Lipase AK > Lipase AY。当藻油与乙醇底物摩尔比为1∶40、酶添加量为10%(质量分数),反应时间为3 h、反应温度为35 ℃条件下利用Lipozyme RM IM催化藻油醇解更有利于2D-MAG合成产物的积累,在此条件下催化合成的2D-MAG产物得率为45.36%。Lipozyme RM IM脂肪酶在重复第6次后,2D-MAG的含量显著低于前5次(P<0.05),表明随着反复利用次数的增加Lipozyme RM IM脂肪酶催化活性在后期显著弱化。该研究将为相关sn-2长链多不饱和脂肪酸功能性结构脂的制备和改性研究提供参考。

本文引用格式

王强 , 谢跃杰 , 李园园 , 魏华恒 , 贺稚非 , 李洪军 . sn-2长链多不饱和脂肪酸单甘酯的制备及其影响因素研究[J]. 食品与发酵工业, 2020 , 46(10) : 19 -26 . DOI: 10.13995/j.cnki.11-1802/ts.023618

Abstract

In this study, 2-monoacyl glycerolrich in 2D-MAG was synthesized from algal oil by ethanol, and the types of lipase, the molar ratio of algal oil to ethanol, reaction time, reaction temperature and utilization times of lipase were studied. The results showed that n-3 PUFA (62.26%) was the most abundant fatty acid of sn-2 in algal oil, and it was an ideal raw material for the synthesis of the sn-2 long-chain structural lipid 2D-MAG.The catalytic activity of lipozyme RM IM >Novozym 435 >lipozyme TL IM >Newlase F > Lipase AK > Lipase AY was in the order of high to low. Lipozyme RM IM was used to catalyze the alcoholysis of alga oil under the conditions of molar ratio of alga oil/ethanol of 1∶40, enzyme addition of 10%, reaction time of 3h and reaction temperature of 35 ℃, which was more conducive to the accumulation of 2D-MAG synthesis products. Under these conditions, the yield of 2D-MAG was 45.36%. After the 6th repetition of Lipozyme RM IM lipase, the content of 2D-MAG was significantly lower than that of the previous five times (P<0.05), indicating that although the overall catalysis of Lipozyme RM IM lipase was stable, its catalytic activity significantly weakened with the increase of repeated use. The results will provide references for the preparation and modification of functional structural lipids of related sn-2 long-chain polyunsaturated fatty acids.

参考文献

[1] HU P, XU X, YU L L. Interesterified trans-free fats rich in sn-2 nervonic acid prepared using Acer truncatum oil, palm stearin and palm kernel oil, and their physicochemical properties[J]. LWT - Food Science and Technology, 2017, 76:156-163.
[2] ARMAND M. Milk fat digestibility[J]. Sciences des Aliments, 2008, 28:84-98.
[3] DOMENICHIELLO A F, KITSON A P, BAZINET R P. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain[J]. Progress in Lipid Research, 2015, 59:54-66.
[4] PFEFFER J, FREUND A, BEL-RHLID R, et al. Highly efficient enzymatic synthesis of 2-monoacylglycerides and structured lipids and their production on a technical scale[J]. Lipids, 2007, 42(10):947-953.
[5] MICHALSKI M C, GENOT C, GAYET C, et al. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism[J]. Progress in Lipid Research, 2013, 52(4):354-373.
[6] TANG W J, WANG X S, HUANG J H,et al.A novel method for the synthesis of symmetrical triacylglycerols by enzymatic transesterification[J]. Bioresource Technology, 2015, 196:559-565.
[7] MUNIO M, ROBLES A, ESTEBAN L, et al. Synthesis of structured lipids by two enzymatic steps: Ethanolysis of fish oils and esterification of 2-monoacylglycerols[J]. Process Biochemistry, 2009, 44(7):723-730.
[8] TURON F, BACHAIN P, CARO Y, et al. A direct method for regiospecific analysis of TAG using α-MAG[J]. Lipids, 2002, 37(8):817-821.
[9] WANG X, LI M, WANG T, et al. An improved method for the synthesis of 2-arachidonoylglycerol[J]. Process Biochemistry, 2014, 49(9):1 415-1 421.
[10] ESTEBAN L, MARÍA DEL MAR MUÍO, ROBLES A, et al. Synthesis of 2-monoacylglycerols (2-MAG) by enzymatic alcoholysis of fish oils using different reactor types[J]. Biochemical Engineering Journal, 2009, 44(2-3):271-279.
[11] RODRÍGUEZ A, ESTEBAN L, MARTÍN L, et al. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions[J]. Enzyme and Microbial Technology, 2012, 51(3):148-155.
[12] JOSÉ L G. Stearidonic acid (18:4n-3): Metabolism, nutritional importance, medical uses and natural sources[J]. European Journal of Lipid Science and Technology, 2007, 109: 1 226-1 236.
[13] MARÍA M M, ESTEBAN L, ROBLES A, et al. Synthesis of 2-monoacylglycerols rich in polyunsaturated fatty acids by ethanolysis of fish oil catalyzed by 1,3 specific lipases[J]. Process Biochemistry, 2008, 43(10):1 033-1 039.
[14] PIYATHEERAWONG W, IWASAKI Y, XU X, et al. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases[J]. Journal of Molecular Catalysis B Enzymatic, 2004, 28(1):19-24.
[15] ESTEBAN L, MARÍA J J, HITA E, et al. Production of structured triacylglycerols rich in palmitic acid at sn-2 position and oleic acid at sn-1,3 positions as human milk fat substitutes by enzymatic acidolysis[J]. Biochemical Engineering Journal, 2011, 54(1):62-69.
[16] HAN L, XU Z, HUANG J, et al. Enzymatically catalyzed synthesis of low-calorie structured lipid in a solvent-free system: Optimization by response surface methodology[J]. Journal of Agricultural and Food Chemistry, 2011, 59(23):12 635-12 642.
[17] IRIMESCU R, IWASAKI Y, HOU C T. Study of TAG ethanolysis to 2-MAG by immobilizedCandidaantarcticalipase and synthesis of symmetrically structured TAG[J]. Journal of the American Oil Chemists&apos; Society, 2002, 79(9):879-883.
[18] ZHANG Y, WANG X, ZOU S, et al. Synthesis of 2-docosahexaenoylglycerol by enzymatic ethanolysis[J]. Bioresource Technology, 2018, 251:334-340.
[19] HE Y, LI J, KODALI S, et al. Liquid lipases for enzymatic concentration of n-3 polyunsaturated fatty acids in monoacylglycerols via ethanolysis: Catalytic specificity and parameterization[J]. Bioresource Technology, 2017, 224:445-456.
[20] ZHANG Y, WANG X, XIE D, et al. Synthesis and concentration of 2-monoacylglycerols rich in polyunsaturated fatty acids[J]. Food Chemistry, 2018, 250:60-66.
[21] PIYATHEERAWONG W, IWASAKI Y, XU X, et al. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases[J]. Journal of Molecular Catalysis B Enzymatic, 2004, 28(1):19-24.
[22] IKEDA I, SASAKI E, YASUNAMI H, et al. Digestion and lymphatic transport of eicosapentaenoic and docosahexaenoic acids given in the form of triacylglycerol, free acid and ethyl ester in rats[J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1995, 1259(3):297-304.
[23] DUAN Z Q, DU W, LIU D H. The solvent influence on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification[J]. Bioresour Technol, 2010, 101(7):2 568-2 571.
文章导航

/