该研究基于高通量测序技术分析了贾湖酒业集团有限责任公司酒醅微生物群落演替性及其在上层、中层和下层酒醅的空间分布。结果表明,各层酒醅微生物群落α-和β-多样性变化规律相似,基于β-多样性分析结果可将整个发酵过程分为发酵前期(0~7 d)、中期(7~15 d)和后期(15~60 d),其中前期物种多样性及丰富度均显著高于后期(P<0.05),乳杆菌属是发酵中、后期酒醅中的绝对优势微生物。各层酒醅微生物群落α-多样性及门水平组成差异的显著性与发酵时间相关。整体上,相同发酵节点下各层酒醅微生物群落α-及β-多样性几乎不存在显著差异,即同层酒醅不能有效地聚成一类。该研究丰富了我国浓香型酒醅微生物群落演替性及其空间分布的内容,为进一步探究空间位置对酒醅微生物群落影响的机理提供数据参考,同时为白酒酿造环境微生物群落空间异质性的研究提供思路和方法借鉴。
In this study, high-throughput sequencing technology was used to analysis the microbial community succession and its spatial distribution on the upper-, middle- and lower-layer in the fermented grains of Jiahu Liquor Group Co., Ltd. The results showed that changes in α-and β-diversity of microbial communities in the fermented grains collected from different layers were similar. According to the result of β-diversity analysis, the entire fermentation process could be divided into early (0-7 d), middle (7-15 d) and late (15-60 d) stage, among which the species diversity and richness in the early stage were significantly higher than those in the late stages (P<0.05), and the genus Lactobacillus was the absolute dominant microorganism in the middle and late stage. The statistical significance of differences of α-diversity and composition at the phylum level of microbial communities in each layer was associated with the fermentation time. Generally, there was no significant difference in the α- and β-diversity of the microbial communities in the fermented grains at different layers with the same fermented time, in other words, fermented grains in each layer could not effectively cluster into one group (UPGMA and PCA analysis). This study could enrich the contents of the microbial community succession and spatial distribution of strong-flavor fermented grains in China, and provide data reference for further exploring the mechanism of the influence of spatial location on the microbial community of fermented grains, as well as provide ideas and methods for the study of the microbial community spatial heterogeneity in the Baijiu brewing environment.
[1] HU X L,DU H,XU Y. Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production[J].International Journal of Food Microbiology, 2015, 214:116-122.
[2] 沈怡方.白酒生产技术全书[M].北京:中国轻工业出版社, 2007.
[3] 张大凤,李可,刘森,等.中国浓香型白酒窖池糟醅中微生物群落演替分析[J].食品科学, 2012,33(15):183-187.
[4] 蒲岚,李璐,谢善慈,等.浓香型白酒窖池中糟醅微生物的变化趋势研究[J].酿酒科技, 2011(1):17-19.
[5] 王涛,赵东,田时平,等.宜宾浓香型白酒酿造过程中可培养细菌的系统发育多样性[J].微生物学报, 2011, 51(10): 1 351-1 357.
[6] ZHANG W X, QIAO Z W, SHIGEMATSU T,et al. Analysis of the bacterial community in zaopei during production of Chinese luzhou-flavor liquor[J]. Journal of the Institute of Brewing, 2005, 111(2):215-222.
[7] 肖辰,陆震鸣,张晓娟,等.泸型酒酒醅细菌群落的发酵演替规律[J]. 微生物学报, 2019,59(1):195-204.
[8] 翟磊,于学健,冯慧军,等.宜宾产区浓香型白酒酿造生境中细菌群落结构的研究[J].食品与发酵工业,2020,46(2):18-24.
[9] 赵东,乔宗伟,彭志云.浓香型白酒发酵过程中酒醅微生物区系及其生态因子演变研究[J].酿酒科技, 2007(7):37-39.
[10] 吕辉,张宿义,冯治平,等.浓香型白酒发酵过程中微生物消长与香味物质变化研究[J].食品与发酵科技, 2010,46(3):37-40;59.
[11] 李家民,邹永芳,王海英,等.DGGE法初步解析浓香型白酒糟醅微生物群落结构[J].酿酒科技, 2013(2):34-37.
[12] 王鹏,蒋超,常强,等.绵甜型白酒酒醅原核微生物群落结构分析[J].食品科学技术学报, 2018,36(5):19-25.
[13] WANG X S,DU H,XU Y. Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor[J]. International Journal of Food Microbiology, 2017, 244:27-35.
[14] BACH I. Novel Industrial Enzymes from Uncultured Arctic Microorganisms: Cold- and Alkaline-active Enzymes of Microbial Origin from the Ikaite Columns of SW Greenland[M]. Danmark: University of Copenhagen, 2014.
[15] MUYZER G, DEWAAL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3):695-700.
[16] SCHIRMER M, IJAZ U Z, DAMORE R, et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform[J]. Nucleic Acids Research, 2015, 43(6): e37.
[17] ALBANESE D, DONATI C. Strain profiling and epidemiology of bacterial species from metagenomic sequencing[J]. Nature Communications, 2017, 8(1): 2 260.
[18] GUO M Y, HOU C J, BIAN M H, et al. Characterization of microbial community profiles associated with quality of Chinese strong-flavour liquor through metagenomics[J]. Journal of Applied Microbiology, 2019, 127(3): 750-762.
[19] WU Q, CHEN L Q, XU Y. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor[J]. International Journal of Food Microbiology, 2013,166(2):323-330.
[20] SOERGEL D A, DEY N, KNIGHT R, et al. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences[J]. ISME Journal, 2012,6(7):1 440-1 444.
[21] MAGOC T, SALZBERG S L.FLASH: Fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics, 2011, 27(21):2 957-2 963.
[22] BOLGER A M, LOHSE M,USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data[J].Bioinformatics, 2014, 30(15):2 114-2 120.
[23] EDGAR R C,HAAS B J,CLEMENTE J C,et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2 194-2 200.
[24] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998.
[25] CHRISTIAN Q, ELMAR P, PELIN Y, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools[J]. Nucleic Acids Research,2013,41(D1):590-596.
[26] ZHANG Y Y, ZHU X Y,LI X Z, et al. The process-related dynamics of microbial community during a simulated fermentation of Chinese strong-flavored liquor[J]. BMC Microbiology, 2017,17(1):196.
[27] 刘凡,周新虎,陈翔,等.洋河浓香型白酒发酵过程酒醅微生物群落结构解析及其与有机酸合成的相关性[J].微生物学报, 2018,58(12):2 087-2 099.
[28] 王雪山,杜海,徐岩.清香型白酒发酵过程中微生物种群空间分布[J].食品与发酵工业, 2018, 44(9):5-12.
[29] LI X R, MA E B, YAN L Z, et al.Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J]. International Journal of Food Microbiology, 2011, 146(1):31-37.
[30] 沈才萍,李喆,敖宗华,等.泸型酒生产中不同层糟醅微生物与白酒风味的关系[J].四川理工学院学报(自然科学版), 2013,26(5):19-23.