[1] ZIEGLER V, FERREIRA C D, HOFFMANN J F, et al. Effects of moisture and temperature during grain storage on the functional properties and isoflavone profile of soy protein concentrate[J]. Food Chemistry, 2018, 242: 37-44.
[2] DE CASTRO R J S, DOMINGUES M A F, OHARA A, et al. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications[J]. Food Structure, 2017, 14: 17-29.
[3] 魏倩,张莹莹,阎欣,等. 豆类蛋白和谷物蛋白的功能性对比[J]. 粮食加工, 2018, 43(1): 36-41.
[4] 王盼盼. 食品中蛋白质的功能(三) 食品中蛋白质的功能特性[J]. 肉类研究, 2009(6): 71-77.
[5] BOWKER B C, GRANT A L, SWARTZ D R. Myosin heavy chain isoforms influence myofibrillar ATPase activity under simulated postmortem pH, calcium, and temperature conditions[J]. Meat Science, 2004, 67(1): 139-147.
[6] AROGUNDADE L A. Functional characterization of Tef (Eragostics tef) protein concentrate: Influence of altered chemical environment on its gelation, foaming, and water hydration properties[J]. Food Hydrocolloids, 2006, 20(6): 831-838.
[7] SUN Fengyuan, HUANG Qilin, HU Ting, et al. Effects and mechanism of modified starches on the gel properties of myofibrillar protein from grass carp [J]. International Journal of Biological Macromolecules, 2014, 64: 17-24.
[8] SUN Lijun, SUN Jiaojiao, PRIDHUVI THAVARAJ, et al. Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage[J]. Food Chemistry, 2017, 224: 372-381.
[9] RAWDKUENA S, BENJAKUL S. Whey protein concentrate: Autolysis inhibition and efiects on the gel properties of surimi prepared from tropical fish[J]. Food Chemistry, 2008, 106: 1 077-1 084.
[10] SUN L, SUN J, PRIDHUVI T, et al. Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage[J]. Food Chemistry, 2017, 224: 372-381.
[11] MARÍN D, ALEMÁN A, SÁNCHEZ-FAURE A, et al. Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels[J]. Food Chemistry, 2018, 245: 525-535.
[12] BUAMARD N, BENJAKUL S. Improvement of gel properties of sardine (Sardinella albella) surimi using coconut husk extracts[J]. Food Hydrocolloids, 2015, 51: 146-155.
[13] VON STASZEWSKI M, JAGUS R J, PILOSOF A M R, et al. Pilosof.Influence of green tea polyphenols on the colloidal stability and gelation of WPC[J]. Food Hydrocolloids, 2011, 25(5): 1 077-1 084.
[14] PRIGENT S V E, VORAGEN A G J, VAN KONINGSVELD G A. Interactions between globular proteins and procyanidins of different degrees of polymerization[J]. Journal of Dairy Science, 2009, 92(12): 5 844-5 853.
[15] ALU'DATT M H, RABABAH T, ALLI I. Effect of phenolic compound removal on rheological, thermal and physico-chemical properties of soybean and flaxseed proteins[J]. Food Chemistry, 2014, 146: 608-613.
[16] BALANGE A K, BENJAKUL S. Cross-linking activity of oxidised tannic acid towards mackerel muscle proteins as affected by protein types and setting temperatures[J]. Food Chemistry, 2010, 120: 268-277.
[17] KROLL J, RAWEL H M. Reactions of plant phenols with myoglobin: Influence of chemical structure of the phenolic compounds[J]. Food Chemistry and Toxicology, 2001, 66 (1): 48-57.
[18] CAO Y, XIONG Y. Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein[J]. Food Chemistry, 2015, 180: 235-243.
[19] KROLL J, RAWEL H M, ROHN S. Reactions of plant phenolics with food proteins and enzymes under special consider-ation of covalent bonds[J]. Food Sci. Technol. Res, 2003,9 (3): 205-218.
[20] OJHA H, MISHRA K, I. HASSAN M, et al. Spectroscopic and isothermal titration calorimetry studies of binding interaction of ferulic acid with bovine serum albumin[J]. Thermochimica Acta, 2012(548): 56-64.
[21] NAGY K, COMPONDU M C C, WILLIAMSON G. Non-covalent binding of proteins to polyphenols correlates with their amino acid sequence[J]. Food Chemistry, 2012, 132: 1 333-1 339.
[22] 徐洁琼,曾茂茂,秦昉,等. 热加工处理对β-乳球蛋白与茶多酚间相互作用的影响[J]. 食品与发酵工业, 2017, 43(8): 96-102.
[23] 王育信. 褐藻多酚的提取和鉴定及其对鱼糜凝胶物性的影响[D]. 上海:上海海洋大学,2018.
[24] CONNAN S, GOULARD F, STIGER V, et al. Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae[J]. Botanica Mar, 2004, 47: 410-416.
[25] RAWEL H M, KROLL J, HOHL U C. Model studies on reactions of plant phenols with whey proteins[J]. Molecular Nutrion, 2001, 45(2): 72-81.
[26] RAWEL H M, ROHN S, KRUSE H P, et al. Structural changes induced in bovine serum albumin by covalent attachment of chlorogenic acid[J]. Food Chemistry, 2002, 78: 443-455.
[27] CROWELL E A. Determination of alpha amino nitrogen in musts and wines by TNBS method [J]. Journal of Enology and Viticulture, 1985, 36(2): 175-177.
[28] BEVERIDGE T, TOMA S J, NAKAI S. Determination of SH- and SS-groups in some food proteins using Ellman’s reagent[J]. Journal of Food Science, 1974, 39: 49-51.
[29] GÓMEZ-GUILLÉN M C, BORDERÍAS A J, MONTERO P. Chemical interactions of nonmuscle proteins in the network of sardine(Sardine pilchardus) muscle gels[J]. Lebensmittel-wissenschaft Und-technologie-food Science and Technology, 1997, 30(6): 602-608.
[30] ALIZADEH-PASDAR N,LI-CHAN E C. Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes[J]. Journal of Agricultural and Food Chemistry, 2000, 48: 328-334.
[31] 曹艳芸. 乳清蛋白与多酚在中性pH条件下的相互作用对蛋白功能性质的影响研究[D]. 无锡:江南大学, 2017.
[32] TANAKA T, KOUNO I. Oxidation of tea catechins: Chemical structures and reaction mechanism[J]. Food Science and Technology Research, 2003,9(2): 128-133.
[33] KROLL J, RAWEL H M, ROHN S. Reactions of plant phenolics with food proteins and enzymes under special consider-ation of covalent bonds[J]. Food Science and Technology Research, 2003,9(3): 205-218.
[34] RAWEL H M, KROLL U J, HOHL C. Model studies on reactions of plant phenols with whey proteins[J]. Molecular Nutrion, 2001, 45(2): 72-81.
[35] RAWEL H M, KROLL J, ROHN S. Reactions of phenolic substances with lysozyme—physicochemical characterisation and proteolytic digestion of the derivatives[J]. Food Chemistry, 2001(72): 59-71.
[36] KANG J, LIU Y, XIE M. Interactions of human serum albumin with chlorogenic acid and ferulic acid[J]. Food Chemistry, 2017, 236: 114-118.
[37] CHU Q, BAO B, WU W. Mechanism of interaction between phenolic compounds and proteins based on non-covalent and covalent interactions[J]. Medicine Research, 2018, 2: 1-6.
[38] 赵新淮, 徐红华, 姜毓敏. 食品蛋白质-结构、性质与功能[M].北京: 科学出版社, 2009: 207.
[39] OJHA H, MISHRA K, HASSAN M I, et al. Spectroscopic and isother-mal titration calorimetry studies of binding interaction of ferulic acid with bovineserum albumin[J]. Thermochimica Acta, 2012,548: 56-64.
[40] 齐宝坤,赵城彬,江连洲,等. 大豆分离蛋白组成及二级结构对表面疏水性的影响[J]. 中国食品学报, 2018, 18(5): 288-293.
[41] RAWEL H M, KROLL J, RIESE B. Reactions of chlorogenic acid with lysozyme: physicochemical characterization and proteolytic digestion of the derivatives[J]. Sensory and Nutritive Qualities of Food, 2000, 65(6): 1 091-1 097.
[42] GÜLER ,VOROB’EV M M, VOGEL V, et al. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 161: 8-18.
[43] JIANG J, ZHANG Z, ZHAO J, et al. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests[J]. Food Chemistry, 2018, 268: 334-341.
[44] ALI M, HOMANN T, KHALIL M, et al. Milk whey protein modification by coffee-specific phenolics: Effect on structural and functional propertie[J]. Journal of Agricultural and Food Chemistry, 2013, 61(28): 6 911-6 920.
[45] KIM S J, USTUNOL Z. Thermal properties, heat sealability and seal attributes of whey protein isolate/lipid emulsion edible films[J]. Journal of Food Science, 2001, 66(7): 985-990.