生产与科研应用

高效降解氨氮的芽孢杆菌筛选及发酵条件优化

  • 张冠根 ,
  • 陈鹏程 ,
  • 郑璞 ,
  • 吴丹 ,
  • 乔慧 ,
  • 张文宜 ,
  • 蒋速飞
展开
  • 1(江南大学 生物工程学院,江苏 无锡,214122)
    2(中国水产科学院淡水渔业研究中心,江苏 无锡,214081)
硕士研究生(郑璞教授为通讯作者,E-mail:zhengpu@jiangnan.edu.cn)

收稿日期: 2020-01-03

  网络出版日期: 2020-06-24

基金资助

国家轻工技术与工程一流学科自主课题(2018-04);江苏现代农业产业技术体系建设专项资金(JATS[2019]472)

Screening and fermentation optimization of bacteria for efficientremoval of amine nitrogen

  • ZHANG Guangen ,
  • CHEN Pengcheng ,
  • ZHENG Pu ,
  • WU Dan ,
  • QIAO Hui ,
  • ZHANG Wenyi ,
  • JIANG Sufei
Expand
  • 1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    2(Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China)

Received date: 2020-01-03

  Online published: 2020-06-24

摘要

采用96孔板初筛以及摇瓶复筛方法,从淤泥中分离到1株去除氨氮能力强的菌株,经形态学、生理生化、16S rDNA鉴定,确定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。该菌株经细菌同化作用实现对氨氮以及亚硝酸盐氮的去除,对100 mg/L的氨氮去除率达92.32%,对50 mg/L亚硝酸盐可完全去除,高氨氮情况下有更高的降解速率,并且在3.2 g/L有机氮情况下仍可有效去除氨氮。当发酵培养基碳氮比(质量比)为1.32时,摇瓶发酵产芽孢浓度为2.3×109 CFU/mL。在3 L发酵罐补料发酵过程中,当葡萄糖补料速度为10 mg/(L·h)时,24 h产芽孢数可达1.12×1010 CFU/mL。将发酵液与玉米芯粉混合制得菌剂,并用于模拟养殖水体,对不同浓度的初始氨氮均有快速高效的去除效果,平均去除率为3.92 mg/(L·h),展示了对养殖水体良好的水质调控作用。

本文引用格式

张冠根 , 陈鹏程 , 郑璞 , 吴丹 , 乔慧 , 张文宜 , 蒋速飞 . 高效降解氨氮的芽孢杆菌筛选及发酵条件优化[J]. 食品与发酵工业, 2020 , 46(11) : 172 -177 . DOI: 10.13995/j.cnki.11-1802/ts.023249

Abstract

A strain for efficient removal of amine nitrogen was isolated from the sludge using 96-well plate screening and shake flask fermentation. The strain was identified as Bacillus amyloliquefaciens by morphology, physiology and 16s rDNA identification. The nitrogen-removing properties were investigated. It was able to remove ammonia and nitrite by assimilation with the removal rate for ammonia of 92.32% when the ammonia concentration was 100 mg/L, and the removal rate for nitrite of 100% when the nitrite concentration was 50 mg/L. The strain removed ammonia at higher speed under higher ammonia concentration and could effectively remove ammonia under as high as 3.2 g/L organic nitrogen. Optimization of spore-producing fermentation was carried out in shake flask, and a spore concentration of 2.3×109 CFU/mL was obtained when C:N (mass ratio) was 1.32. In a 3 L fermenter, the spore concentration reached 1.12×1010 CFU/mL in 24 h fed with 10 mg/(L·h) of glucose. The fermentation broth was mixed with corn cob powder and could remove ammonia fast and efficiently under different initial concentrations of ammonia in simulated aquaculture water. The average removal rate of ammonia was 3.92 mg/(L·h), outstanding ability to improve the water quality in aquaculture.

参考文献

[1] LI Y, WANG Y, FU L, et al. Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1-5[J]. Bioresource Technology, 2017, 230:103-111.
[2] BOYD C E,TUCKER C S. Pond aquaculture water quality management[M]. Boston: Kluwer Academic Publishers, 1998.
[3] 吕永辉,李明爽. 我国水产养殖用微生态制剂行业现状与发展策略[J].中国水产, 2015(8):34-36.
[4] WANG A, RAN C, WANG Y B, et al. Use of probiotics in aquaculture of China-a review of the past decade[J]. Fish & Shellfish Immunology, 2019,86:734-755.
[5] MINGMONGKOLCHAI S, PANBANGRED W. Bacillus probiotics: An alternative to antibiotics for livestock production[J]. Journal of Applied Microbiology, 2018, 124(6): 1 334-1 346.
[6] KHARDZIANI T, KACHLISHVILI E, SOKHADZE K, et al. Elucidation of Bacillus subtilis KATMIRA 1933 potential for spore production in submerged fermentation of plant raw materials[J]. Probiotics and Antimicrobial Proteins, 2017, 9(4):435-443.
[7] REN H, SU Y T, GUO X H. Rapid optimization of spore production from Bacillus amyloliquefaciens in submerged cultures based on dipicolinic acid fluorimetry assay[J]. AMB Express, 2018, 8(1):21.
[8] SU Z Z, LI Y, PAN L Q, et al. An investigation on the immunoassays of an ammonia nitrogen-degrading bacterial strain in aquatic water[J]. Aquaculture, 2016, 450: 17-22.
[9] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
[10] 彭虹旎. 短小芽孢杆菌(Bacillus pumilus 4D-14)的分离与分子鉴定、抑菌性及微生态制剂应用研究[D].青岛:中国海洋大学, 2013.
[11] 王涛,刘健,左建英,等.解淀粉芽孢杆菌高密度发酵条件的优化[J].中国测试,2017,43(05):49-52.
[12] 钱文静,胡永红,杨文革.响应面法优化生物活菌剂解淀粉芽孢杆菌JT-84发酵工艺[J].河北农业科学,2018,22(6):65-72;84.
[13] 刘春红,张丽霞,李燕,等.枯草芽胞杆菌B201产芽孢培养基优化[J].中国生物防治学报,2016,32(5):650-656.
[14] 王金玲,刘晓平,赵凤艳,等.解磷巨大芽孢杆菌液体发酵培养条件的优化[J].中国农学通报,2013,29(15):68-72.
[15] 王继雯,刘莹莹,李冠杰,等.巨大芽孢杆菌C_2产芽孢培养条件的优化[J].中国农学通报,2014,30(36):155-160.
[16] IDEMITSU KOSAN Co.,Ltd.,Chiyoda-ku(JP).sporulation method of bacillus bacteria: US, US/2019/0048311 A1[P]. 2019-02-14.
[17] 侯颖,孙军德,徐建强,等. 养殖水体中高效氨氮降解菌的分离与鉴定[J]. 水产科学, 2005, 24(10):22-24.
[18] 邵晴. 氨氮和亚硝态氮去除菌的研究[D].无锡:江南大学,2008.
[19] 于党辉,王秀华,张宇哲,武和英,张琴.环境条件对1株假交替单胞菌脱氮效果的影响[J/OL].渔业科学展:1-8[2020-04-13].https://doi.org/10.19663/j.issn2095-9869.20190330001.
[20] CHEN P,LIJ,Li Q X,et al.Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24[J]. Bioresour Technol,2012,116:266-270.
[21] HE X,SUN Q,Xu T,et al.Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04[J]. Bioresour Technol, 2015,182:18-25.
[22] 刘耀斌. 池塘种稻模式对水体养分含量及其生态化学计量特征的影响[D].北京:中国农业科学院,2017.
文章导航

/