[1] O′BRIEN E, DIETRICH D R. Ochratoxin A: the continuing enigma[J]. Critical Reviews in Toxicology, 2005, 35(1): 33-60.
[2] 周景明, 李春革, 祁艳华, 等. 赭曲霉毒素 A 完全抗原的制备及鉴定[J]. 动物医学进展, 2016, 37(1): 38-42.
[3] 黎睿, 谢刚, 王松雪. 高效液相色谱法同时检测粮食中常见 8 种真菌毒素的含量[J]. 食品科学, 2015,36(6): 206-210.
[4] LIU B H, TSAO Z J, WANG J J, et al. Development of a monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip[J]. Analytical Chemistry, 2008, 80(18): 7 029-7 035.
[5] CRUZ-AGUADO J A, PENNER G. Determination of ochratoxin A with a DNA aptamer[J]. Journal of Agricultural and Food Chemistry, 2008, 56(22): 10 456-10 461.
[6] AGUILAR-ARTEAGA K, RODRIGUEZ J A, BARRADO E. Magnetic solids in analytical chemistry: a review[J]. Analytica Chimica Acta, 2010, 674(2): 157-165.
[7] SU Y, SHAO C G, HUANG X L, et al. Extraction and detection of bisphenol A in human serum and urine by aptamer-functionalized magnetic nanoparticles[J]. Analytical and Bioanalytical Chemistry, 2018, 410(7): 1 885-1 891.
[8] CHEN J, HAO L, WU Y, et al. Integrated magneto-fluorescence nanobeads for ultrasensitive glycoprotein detection using antibody coupled boronate-affinity recognition[J]. Chemical Communications, 2019, 55(69): 10 312-10 315.
[9] XIANYU Y L, WANG Q L, CHEN Y P. Magnetic particles-enabled biosensors for point-of-care testing[J]. TrAC Trends in Analytical Chemistry, 2018, 106: 213-224.
[10] SELIM Ü, CHIARI M, ÖZCAN A. Introduction to the special issue of optical biosensors[J]. Nanophotonics, 2017, 6(4): 623-625.
[11] LIN C, ZHENG H, SUN M, et al. Highly sensitive colorimetric aptasensor for ochratoxin A detection based on enzyme-encapsulated liposome[J]. Analytica Chimica Acta, 2018, 1 002: 90-96.
[12] HUANG Y, REN J, QU X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications[J]. Chemical Reviews, 2019, 119(6): 4 357-4 412.
[13] WANG C, QIAN J, WANG K, et al. Colorimetric aptasensing of ochratoxin A using Au@ Fe3O4 nanoparticles as signal indicator and magnetic separator[J]. Biosensors and Bioelectronics, 2016, 77: 1 183-1 191.
[14] TIAN F, ZHOU J, JIAO B, et al. A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A[J]. Nanoscale, 2019,11(19):9 547-9 555.
[15] HAO N, LU J, ZHOU Z, et al. A pH-resolved colorimetric biosensor for simultaneous multiple target detection[J]. ACS Sensors, 2018, 3(10): 2 159-2 165.
[16] 李素, 肖义陂, 武乐, 等. 金标记羟胺放大化学发光检测赭曲霉毒素A[J]. 分析测试学报, 2018,37(1): 57-61.
[17] HUN X, LIU F, MEI Z H, et al. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A[J]. Biosensors and Bioelectronics, 2013, 39(1): 145-151.
[18] ZHANG Z, XIA X, XIANG X, et al. Conjugated cationic polymer-assisted amplified fluorescent biosensor for protein detection via terminal protection of small molecule-linked DNA and graphene oxide[J]. Sensors and Actuators B: Chemical, 2017, 249: 8-13.
[19] LIU Y, YAN H, SHANGGUAN J, et al. A fluorometric aptamer-based assay for ochratoxin A using magnetic separation and a cationic conjugated fluorescent polymer[J]. Microchimica Acta, 2018, 185(9): 1-7.
[20] HAYAT A, MISHRA R K, CATANANTE G, et al. Development of an aptasensor based on a fluorescent particles-modified aptamer for ochratoxin A detection[J]. Analytical and Bioanalytical Chemistry, 2015, 407(25): 7 815-7 822.
[21] WANG R, XIANG Y, ZHOU X, et al. A reusable aptamer-based evanescent wave all-fiber biosensor for highly sensitive detection of Ochratoxin A[J]. Biosensors and Bioelectronics, 2015, 66: 11-18.
[22] DUAN H, HUANG X L, SHAO Y N, et al. Size-dependent immunochromatographic assay with quantum dot nanobeads for sensitive and quantitative detection of ochratoxin A in corn[J]. Analytical Chemistry, 2017, 89(13): 7 062-7 068.
[23] GUO L, SHAO Y, DUAN H, et al. Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce[J]. Analytical chemistry, 2019, 91(7): 4 727-4 734.
[24] WANG C, QIAN J, WANG K, et al. Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A[J]. Biosensors and Bioelectronics, 2015, 68: 783-790.
[25] QIAN J, REN C, WANG C, et al. Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1[J]. Analytica Chimica Acta, 2018, 1 019: 119-127.
[26] YAO L, CHEN Y, TENG J, et al. Integrated platform with magnetic purification and rolling circular amplification for sensitive fluorescent detection of ochratoxin A[J]. Biosensors and Bioelectronics, 2015, 74: 534-538.
[27] DAI S, WU S, DUAN N, et al. A near-infrared magnetic aptasensor for ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles[J]. Talanta, 2016, 158: 246-253.
[28] WU S, DUAN N, WANG Z, et al. Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels[J]. Analyst, 2011, 136(11): 2 306-2 314.
[29] ZHANG J, ZHANG X, YANG G, et al. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of ochratoxin A in wheat[J]. Biosensors and Bioelectronics, 2013, 41: 704-709.
[30] CHEN Z, LIU C, CAO F, et al. DNA metallization: principles, methods, structures, and applications[J]. Chemical Society Reviews, 2018, 47(11): 4 017-4 072.
[31] CHEN J, ZHANG X, CAI S, et al. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection[J]. Biosensors and Bioelectronics, 2014, 57: 226-231.
[32] ZHANG J, XIA Y, CHEN M, et al. A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn (II)-ion signal-enhancement for simultaneous detection of OTA and AFB1[J]. Sensors and Actuators B: Chemical, 2016, 235: 79-85.
[33] HE Y, TIAN F, ZHOU J, et al. A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold[J]. Microchimica Acta, 2019, 186(3): 199.[34] ZHAO Y, YANG Y, LUO Y, et al. Double detection of mycotoxins based on SERS labels embedded Ag@ Au core-shell nanoparticles[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 21 780-21 786.
[35] SONG D, YANG R, FANG S, et al. SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement[J]. Microchimica Acta, 2018, 185(10): 491.
[36] SHAO B, MA X, ZHAO S, et al. Nanogapped Au (core)@ Au-Ag (shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A[J]. Analytica Chimica Acta, 2018, 1 033: 165-172.
[37] CHEN H, LIN M, WANG C, et al. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale[J]. Journal of the American Chemical Society, 2015, 137(42): 13 698-13 705.
[38] BARTHELMEBS L, HAYAT A, LIMIADI A W, et al. Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles[J]. Sensors and Actuators B: Chemical, 2011, 156(2): 932-937.
[39] RHOUATI A, HAYAT A, HERNANDEZ D B, et al. Development of an automated flow-based electrochemical aptasensor for on-line detection of ochratoxin A[J]. Sensors and Actuators B: Chemical, 2013, 176: 1 160-1 166.
[40] BONEL L, VIDAL J C, DUATO P, et al. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer[J]. Biosensors and Bioelectronics, 2011, 26(7): 3 254-3 259.
[41] WANG C, QIAN J, WANG K, et al. Nitrogen-doped graphene quantum dots@SiO2 nanoparticles as electrochemiluminescence and fluorescence signal indicators for magnetically controlled aptasensor with dual detection channels[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26 865-26 873.
[42] WANG C, QIAN J, AN K, et al. Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels[J]. Biosensors and Bioelectronics, 2017, 89: 802-809.
[43] HAO N, JIANG L, QIAN J, et al. Ultrasensitive electrochemical Ochratoxin A aptasensor based on CdTe quantum dots functionalized graphene/Au nanocomposites and magnetic separation[J]. Journal of Electroanalytical Chemistry, 2016, 781: 332-338.
[44] TONG P, ZHAO W, ZHANG L, et al. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification[J]. Biosensors and Bioelectronics, 2012, 33(1): 146-151.
[45] SHI L, RONG X, WANG Y, et al. High-performance and versatile electrochemical aptasensor based on self-supported nanoporous gold microelectrode and enzyme-induced signal amplification[J]. Biosensors and Bioelectronics, 2018, 102: 41-48.
[46] MODH H, SCHEPER T, WALTER J. Detection of ochratoxin A by aptamer-assisted real-time PCR-based assay (Apta-qPCR)[J]. Engineering in Life Sciences, 2017, 17(8): 923-930.
[47] LISI F, PETERSON J R, GOODING J J. The application of personal glucose meters as universal point-of-care diagnostic tools[J]. Biosensors and Bioelectronics, 2019, 148: 111 835.
[48] GU C, LONG F, ZHOU X, et al. Portable detection of ochratoxin A in red wine based on a structure-switching aptamer using a personal glucometer[J]. RSC Advances, 2016, 6(35): 29 563-29 569.
[49] QIU S, YUAN L, WEI Y, et al. DNA template-mediated click chemistry-based portable signal-on sensor for ochratoxin A detection[J]. Food Chemistry, 2019, 297:124 929.