研究报告

高产胞外多糖乳酸菌的诱变育种及其益生特性

  • 卢承蓉 ,
  • 叶美芝 ,
  • 上官文丹 ,
  • 陈松 ,
  • 钟青萍
展开
  • (广东省食品质量与安全重点实验室,华南农业大学 食品学院,广东 广州,510642)
硕士研究生(钟青萍教授为通讯作者,E-mail:1198120580@qq.com)

收稿日期: 2020-03-01

  网络出版日期: 2020-07-15

基金资助

广东省重点领域研发计划(广东省科技创新战略专项资金项目)(2018B020206001);国家自然科学基金项目(31972046);广东省扬帆计划引进创新创业团队项目(2016YT03S056)

Mutation breeding for high-yield exopolysaccharide lactic acid bacteria and evaluation of its probiotic properties

  • LU Chengrong ,
  • YE Meizhi ,
  • SHANGGUAN Wendan ,
  • CHEN Song ,
  • ZHONG Qingping
Expand
  • (Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China)

Received date: 2020-03-01

  Online published: 2020-07-15

摘要

筛选高产胞外多糖 (exopolysaccharide,EPS) 的乳酸菌菌株,对其进行紫外诱变以期获得EPS高产突变菌株,考察突变菌株及原始菌株对酸、胆盐、人工模拟胃肠液的耐受性,并测定其EPS的体外抗氧化活性。筛选出1株乳酸片球菌L15,其EPS产量为175.88 mg/L,对其进行二轮紫外诱变,得到1株高产EPS突变菌株L15U2-26,EPS产量可达232.34 mg/L。L15、L15U2-26耐酸性较强,在pH为3.0的环境下培养3 h后,存活率分别为123.49%、132.40%;经含3.0 g/L胆盐培养基处理24 h后,其活菌数均从107 CFU/mL下降至105 CFU/mL;经人工模拟胃、肠液处理后,最终活菌数分别为104、105CFU/mL。L15 EPS质量浓度为0.50~8.00 mg/mL时,对DPPH自由基、ABTS自由基、羟自由基、超氧阴离子的清除率分别为18.38%~76.88%、12.87%~71.79%、29.70%~44.16%、8.11%~15.38%,L15U2-26的EPS的清除率则分别为17.35%~72.41%、10.73%~76.25%、30.94%~49.51%、13.64%~23.94%。该研究结果表明L15、L15U2-26具有良好的益生功能,为后期的体内活性研究奠定基础,也为乳酸菌EPS作为天然抗氧化剂提供理论依据。

本文引用格式

卢承蓉 , 叶美芝 , 上官文丹 , 陈松 , 钟青萍 . 高产胞外多糖乳酸菌的诱变育种及其益生特性[J]. 食品与发酵工业, 2020 , 46(12) : 14 -20 . DOI: 10.13995/j.cnki.11-1802/ts.023807

Abstract

High EPS-producing strains of lactic acid bacteria were screened, and UV mutation was conducted to obtain mutant strains with high yield of EPS. The tolerance of the mutant strains and the original strain to acids, bile salts, artificial simulated gastrointestinal fluid were investigated, and the antioxidant activity of the EPS was determined in vitro. Pediococcus lactis L15 was selected and the EPS yield was 175.88 mg/L, after two rounds of UV mutation, the EPS high-yielding mutant strain L15U2-26 was obtained with the EPS yield of 232.34 mg/L. L15 and L15U2-26 showed strong acid resistance. After 3 h of culture in a pH 3.0 environment, the survival rates were 123.49% and 132.40%, respectively. After treated with 3.0 g/L bile salt medium for 24 h, the number of viable cells decreased from 107 CFU/mL to 105 CFU/mL. After artificial simulated gastric and intestinal fluid treatment, the final viable counts were 104 and 105 CFU/mL, respectively. The clearance rates of L15 EPS at 0.50-8.00 mg/mL on DPPH, ABTS, hydroxyl radicals, and superoxide anions were 18.38%-76.88%, 12.87%-71.79%, 29.70%-44.16%, 8.11%-15.38%, and the clearance rates of L15U2-26 EPS were 17.35%-72.41%, 10.73%-76.25%, 30.94%-49.51%, 13.64%-23.94%, respectively. The results indicated that L15 and L15U2-26 possessed good probiotic functions, providing basis for further research on in vivo activity, and theoretical basis for EPS of lactic acid bacteria as a natural antioxidant.

参考文献

[1] XU Y,CUI Y,WANG X,et al.Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041[J].International Journal of Biological Macromolecules,2019,128:480-492.
[2] DILNA S V,SURYA H,ASWATHY R G,et al.Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4[J].LWT-Food Science and Technology,2015,64(2):1 179-1 186.
[3] QURASHI A W,SABRI A N.Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress.[J].Brazilian Journal of Microbiology,2012,43(3):1 183-1 191.
[4] LYNCH K M,ZANNINI E,COFFEY A,et al.Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits[J].Annual Review of Food Science and Technology,2018,9(1):155-176.
[5] ZHU W,WANG Y,YAN F,et al.Physical and chemical properties, percutaneous absorption-promoting effects of exopolysaccharide produced by Bacillus atrophaeus WYZ strain[J].Carbohydrate Polymers,2018,192:52-60.
[6] MIN W,FANG X,WU T,et al.Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103[J].Journal of Bioscience and Bioengineering,2019,127(6):758-766.
[7] RAJOKA M S,JIN M,HAOBIN Z,et al.Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk[J].LWT-Food Science and Technology,2018,89:638-647.
[8] WANG J,WU T,FANG X,et al.Characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus plantarum JLK0142 isolated from fermented dairy tofu[J].International Journal of Biological Macromolecules,2018,115:985-993.
[9] LI S,HUANG R,SHAH N P,et al.Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315[J].Journal of Dairy Science,2014,97(12):7 334-7 343.
[10] 李卫娜,赵波,柳陈坚,等.副干酪乳杆菌胞外多糖抗氧化活性分析[J].食品工业科技,2019,40(24):34-39.
[11] 白丽娟.马奶酒中产胞外多糖瑞士乳杆菌的筛选及多糖的结构和抗氧化活性研究[D].沈阳:沈阳农业大学,2017.
[12] 刘刚,梁琪,宋雪梅,等.复合诱变选育高产胞外多糖嗜热链球菌菌株[J].食品与发酵科技,2019,55(1):11-18.
[13] 王诗玮,纪琪,朱天辉.紫外线诱变莱氏绿僵菌对敌敌畏的耐药性[J].植物保护,2019,45(6):185-191.
[14] JEONG D,KIM D,KANG I,et al.Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir[J].Food Control,2017,78:436-442.
[15] 丁楠,何美珊,戈子龙,等.果蔬发酵制品的功效及应用研究进展[J].食品工业科技,2019,40(7):332-336.
[16] WANG X,SHAO C,LIU L,et al.Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041[J].Biological Macromolecules,2017,103:1 173-1 184.
[17] 黄燕燕,郭均,黎恒希,等.降胆固醇乳酸菌的体外筛选及其降胆固醇机理探讨[J].食品科学,2018,39(6):88-94.
[18] 李岩岩.鼠李糖乳杆菌与干酪乳杆菌纯种发酵豆乳产品贮藏稳定性及菌体肠道耐受性研究岩[D].保定:河北农业大学,2012.
[19] YE G,CHEN Y,WANG C,et al.Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage[J].International Journal of Biological Macromolecules,2018,120(PartA):1 315-1 321.
[20] CHEN Y X,LIU X,XIAO Z,et al.Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations[J].International Journal of Biological Macromolecules,2016,91:505-509.
[21] 黄云鹏,姜淑娟,钱方,等.高产胞外多糖嗜热链球菌的诱变育种研究[J].食品工业,2012,33(6):43-45.
[22] 王帅,贺羽,贺斌.自然发酵泡菜中高体外抗氧化活性乳酸菌的筛选及其对模拟胃肠道环境的耐受性[J].食品工业科技,2019,40(22):93-97.
[23] NWODO U U,GREEN E,OKOH A I.Bacterial exopolysaccharides: Functionality and prospects[J]. International Journal of Molecular Sciences,2012,13(11):14 002-14 015.
[24] FEDOROVÁ M,NEMCOVÁ R,MUDRONOVÁ D,et al. Exopolysaccharides may increase gastrointestinal stress tolerance of Lactobacillus reuteri[J].Folia Veterinaria,2018,62(4):24-32.
[25] RIBEIROA J S,SANTOS M J,SILVA L K,et al.Natural antioxidants used in meat products: A brief review[J].Meat Science,2019,148:181-188.
[26] ZHANG J,CAO Y,WANG J,et al.Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6[J].Carbohydrate Polymers,2016,146:368-375.
[27] CHEN Y,MAO W,TAO H,et al.Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16[J].Bioresource Technology,2011,102(17):8 179-8 184.
[28] 马文锦,李梅林,王博,等.胶红酵母 Rhodotorula mucilaginosa CICC 33013胞外多糖的分离纯化及抗氧化活性研究[J].食品与发酵工业,2019,45(11):65-69.
[29] LIU C F,TSENG K C,CHIANG S S,et al.Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides[J]. International Journal of Molecular Sciences,2011,91(12):2 284-2 291.
[30] 刘煜珺,张雨晴,高原,等.乳杆菌胞外多糖抗氧化活性研究[J].中国食品学报,2019,19(6):21-35.
[31] 李卫娜,赵波,柳陈坚,等.副干酪乳杆菌胞外多糖抗氧化活性分析[J].食品工业科技,2019,40(24):34-39.
文章导航

/