为探究苹果中含有的有机酸对于浊汁体系稳定性的影响,该研究以苹果中有机酸的种类及含量为基础,通过紫外光谱、傅里叶变换红外光谱及扫描电子显微镜探究不同浓度苹果酸、柠檬酸、酒石酸与果胶复合体系的结构变化。通过pH、单糖组成、表观黏度、溶液粒径、体系浊度保留率等指标探究复合体系的理化特性及稳定性变化。结果表明,3种有机酸对复合体系影响的整体趋势相似,有机酸的加入均会降低复合体系pH,破坏果胶原有网络结构,引起果胶水解。组成的复合体系表面变得光滑,孔状结构消失。复合体系的黏度、溶液粒径、稳定性均有显著降低(P<0.05)。研究结果为改善苹果混浊果汁产品加工工艺提供理论参考。
In order to explore the effect of organic acids contained in apples on the stability of cloudy juice system, based on the types and contents of organic acids in apples, this study explored the effects of different concentrations of malic acid, citric acid, and tartaric acid on the structure with pectin composite systems were investigated by ultraviolet spectrum, Fourier transform infrared spectrum, and scanning electron microscope. To explore the physicochemical properties and stability of the system, monosaccharide composition, pH value, apparent viscosity, particle size, and turbidity retention rate were studied. Results showed that addition of malic acid, citric acid, and tartaric acid had similar effects on the whole system, which could destroy the network structure of pectin,causes pectin hydrolysis and make the pectin surface smooth and the pore structure disappeared. Besides, addition of organic acids significantly reduced the viscosity, particle size, and stability of the system (P<0.05). The research results provide a theoretical reference for improving the processing technology of turbid apple juice products.
[1] TIAN You, GOU Xiaoju, NIU Pengfei, et al. Multivariate data analysis of the physicochemical and phenolic properties of not from concentrate apple juices to explore the alternative cultivars in juice production[J]. Food Analytical Methods, 2018, 11(6): 1 735-1 747.
[2] 朱丹实, 任晓俊, 魏立威, 等. 苹果浊汁云状颗粒体系稳定机制研究进展[J]. 食品工业科技, 2019, 40(2): 306-311.
[3] 魏立威. 过滤及均质对苹果浊汁云状颗粒稳定性的影响[D]. 锦州: 渤海大学, 2019.
[4] 曹美霞. 红肉苹果浊汁加工贮藏研究及工艺设计[D]. 西安: 陕西师范大学, 2016.
[5] LARSEN L R, BUERSCHAPER J, SCHIEBER A, et al. Interactions of anthocyanins with pectin and pectin fragments in model solutions[J]. Journal of Agriculture and Food Chemistry, 2019, 67(33): 9 344-9 353.
[6] CHAN S Y, CHOO W S, YOUNG D J, et al. Pectin as a rheology modifier: Origin, structure, commercial production and rheology[J]. Carbohydrate Polymers, 2017, 161: 118-139.
[7] ELLERBEE L, WICKER L. Calcium and pH influence on orange juice cloud stability[J]. Journal of the Science of Food and Agriculture, 2011, 91(1): 171-177.
[8] HUANG Zhenyu, HU Huiyao, SHEN Fei, et al. Relatively high acidity is an important breeding objective for fresh juice-specific apple cultivars[J]. Scientia Horticulturae, 2018, 233: 29-37.
[9] REN Wenbo, ZHAO Shaojie, LIAN Yunhe, et al. Effects of hydrosoluble calcium ions and organic acids on citrus oil emulsions stabilized with citrus pectin[J]. Food Hydrocolloids, 2020, 100: 105 413.
[10] 郭爽, 刘璇, 毕金峰, 等. 基于品质指标的苹果浊汁品种与产地差异性分析[J]. 食品科学, 2018, 39(8): 115-122.
[11] 王文骏. 柑橘皮果胶超声辅助提取的作用机制研究[D]. 杭州: 浙江大学, 2018..
[12] 梁迪, 杨曦, 侯燕杰, 等. 苹果果胶-多酚复合膜液制备、流变特性及抗氧化性研究[J]. 食品与发酵工业, 2018, 44(8): 99-106.
[13] CHEN Jun, WU Shuangshuang, LIANG Ruihong, et al. The effect of high speed shearing on disaggregation and degradation of pectin from creeping fig seeds[J]. Food Chemistry, 2014, 165: 1-8.
[14] 王晓静. 火棘果中活性成分的分离及其抗油脂氧化酸败分析[D]. 吉首: 吉首大学, 2016.
[15] 黄慧敏, 张伟国. 反相高效液相色谱法测定苹果酸发酵液中的有机酸[J]. 食品与发酵工业, 2012, 38(5): 180-184.
[16] WANG Wenjun, MA Xiaobin, XU Yuting, et al. Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method[J]. Food Chemistry, 2015, 178: 106-114.
[17] LIN Z, FISCHER J, WICKER L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J]. Food Chemistry, 2016, 194: 986-993.
[18] GAWKOWSKA D, CYBULSKA J, ZDUNEK A. Cross-linking of sodium carbonate-soluble pectins from apple by zinc ions[J]. Carbohydrate Polymers, 2018, 196: 1-7.
[19] 谢蔓莉, 叶发银, 雷琳, 等. 酸法提取条件对苹果果胶理化特性的影响及机制[J]. 食品与发酵工业, 2018, 44(4): 287-292.
[20] 易建勇, 毕金峰, 刘璇, 等. 果胶结构域精细结构研究进展[J]. 食品科学.
[21] ROUND A N, RIGBY N M, MACDOUGALL A J, et al. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy[J]. Carbohydrate Research, 2010, 345(4): 487-497.
[22] YANG Jinshu, MU Taihua, MA Mengmei. Extraction, structure, and emulsifying properties of pectin from potato pulp[J]. Food Chemistry, 2018, 244: 197-205.
[23] 俸思洁. 氨基酸修饰果胶的制备及性质研究[D]. 南昌: 南昌大学, 2016.
[24] 吴剑夫. 秋葵果胶提取工艺优化及理化特性比较研究[D]. 兰州: 甘肃农业大学, 2018.
[25] GILSENAN P M, RICHARDSON R K, MORRIS E R. Thermally reversible acid-induced gelation of low-methoxy pectin[J]. Carbohydrate Polymers, 2000, 41(4): 339-349.
[26] HOLST P S, KJ?NIKSEN A L, BU H, et al. Rheological properties of pH-induced association and gelation of pectin[J]. Polymer Bulletin, 2006, 56(2-3): 239-246.
[27] PENG Xiaoyan, MU Taihua, ZHANG Miao, et al. Effects of pH and high hydrostatic pressure on the structural and rheological properties of sugar beet pectin[J]. Food Hydrocolloids, 2016, 60: 161-169.
[28] ABURTO J, MORAN M, GALANO A, et al. Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 94-104.
[29] 崔文慧. 柠檬酸酰化改性壳聚糖及其产物结构和功能性质研究[D]. 北京: 中国农业科学院, 2016.
[30] GENOVESE D B, LOZANO J E. Effect of cloud particle characteristics on the viscosity of cloudy apple juice[J]. Journal of Food Science, 2000, 65(4): 641-645.