[1] DROZIN′SKA E, KANCLERZ A, KUREK M A. Microencapsulation of sea buckthorn oil with β-glucan from barley as coating material[J]. International Journal of Biological Macromolecules, 2019, 131:1 014-1 020.
[2] SHAH A, GANI A, AHMAD M, et al. β-Glucan as an encapsulating agent: Effect on probiotic survival in simulated gastrointestinal tract[J]. International Journal of Biological Macromolecules, 2016, 82: 217-222.
[3] YOUNG S, NITIN N. Thermal and oxidative stability of curcumin encapsulated in yeast microcarriers[J]. Food Chemistry, 2019, 275: 1-7.
[4] LIU J, CHEN F, TIAN W, et al. Optimization and characterization of curcumin loaded in octenylsuccinate oat β-glucan micelles with an emphasis on degree of substitution and molecular weight[J]. Journal of Agricultural and Food Chemistry, 2014, 62(30): 7 532-7 540.
[5] NUMATA M, TAKIGAMI Y, TAKAYAMA M. Creation of hierarchical polysaccharide strand: supramolecular spinning of nanofibers by microfluidic device[J]. Chemistry Letters, 2011, 40(1): 102-103.
[6] KARNEZIS T. Topological characterization of an inner membrane (1→3)-β-D-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC31749[J]. Glycobiology, 2003, 13(10): 693-706.
[7] BÄUMER D, PREISFELD A, RUPPEL H G. Isolation and characterization of paramylon synthase from Euglena gracilis (euglenophyceae) 1[J]. Journal of Phycology, 2001, 37(1): 38-46.
[8] WANG Y, ZHANG L. Chain conformation of carboxymethylated derivatives of (1→3)-β-D-glucan from Poria cocos sclerotium[J]. Carbohydrate Polymers, 2006, 65(4): 504-509.
[9] STORSLEY J M, IZYDORCZYK M S, You S, et al. Structure and physicochemical properties of β-glucans and arabinoxylans isolated from hull-less barley[J]. Food Hydrocolloids, 2003, 17(6): 831-844.
[10] BRUMMER Y, DEFELICE C, WU Y, et al. Textural and rheological properties of oat β-glucan gels with varying molecular weight composition[J]. Journal of Agricultural and Food Chemistry, 2014, 62(14):3 160-3 167.
[11] CUI W, WOOD P J. Relationships between structural features, molecular weight and rheological properties of cereal β-D-glucans[J].Hydrocolloids,2000: 159-168.
[12] DU B, ZENG H, YANG Y, et al. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication[J]. International Journal of Biological Macromolecules, 2016, 91: 100-105.
[13] ZHANG L, LI X, XU X, et al. Correlation between antitumor activity, molecular weight, and conformation of lentinan[J]. Carbohydrate Research, 2005, 340(8): 1 515-1 521.
[14] FARIÑA J I, SIÑERIZ F, MOLINA O E, et al. Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics[J]. Carbohydrate Polymers, 2001, 44(1): 41-50.
[15] XU S, XU X, ZHANG L. Effect of heating on chain conformation of branched β-glucan in water[J]. The Journal of Physical Chemistry B, 2013, 117(28): 8 370-8 377.
[16] KHAN A A, GANI A, MASOODI F A, et al. Structural, thermal, functional, antioxidant & antimicrobial properties of β-D-glucan extracted from baker's yeast (Saccharomyces cereviseae)—effect of γ-irradiation[J]. Carbohydrate Polymers, 2016, 140:442-450.
[17] BOBADILLA F, RODRIGUEZ-TIRADO C, IMARAI M, et al. Soluble β-1,3/1,6-glucan in seaweed from the southern hemisphere and its immunomodulatory effect[J]. Carbohydrate Polymers, 2013, 92(1): 241-248.
[18] SLETMOEN M, NAESS S N, STOKKE B T. Structure and stability of polynucleotide-(1,3)-β-D-glucan complexes[J]. Carbohydrate Polymers, 2009, 76(3): 389-399.
[19] SAKURAI K, UEZU K, NUMATA M, et al. β-1,3-glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles[J]. Chemical Communications, 2005 (35): 4 383-4 398.
[20] LEE K, KWON Y, HWANG J, et al. Synthesis and functionalization of β-glucan particles for the effective delivery of doxorubicin molecules[J]. ACS Omega, 2019, 4(1): 668-674.
[21] SOTO E R, KIM H C, YAGITA H, et al. Polydopamine coating of glucan particles increases uptake into Peyer’s patches[J]. ACS Applied Bio Materials, 2019, 2(9): 3 748-3 754.
[22] VOLPATO H, SCARIOT D B, SOARES E F P, et al. In vitro anti-leishmania activity of T6 synthetic compound encapsulated in yeast-derived β-(1,3)-d-glucan particles[J]. International Journal of Biological Macromolecules, 2018, 119: 1 264-1 275.
[23] LAZARIDOU A, KRITIKOPOULOU K, BILIADERIS C G. Barley β-glucan cryogels as encapsulation carriers of proteins: Impact of molecular size on thermo-mechanical and release properties[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 6(2): 99-108.
[24] LAZARIDOU A, BILIADERIS C G, IZYDORCZYK M S. Molecular size effects on rheological properties of oat β-glucans in solution and gels[J]. Food Hydrocolloids, 2003, 17(5): 693-712.
[25] XIONG S, MELTON L D, EASTEAL A J, et al. Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel[J]. Journal of Agricultural and Food Chemistry, 2006, 54(17): 6 201-6 208.
[26] VEVERKA M, DUBAJ T, VEVERKOVÁ E, et al. Natural oil emulsions stabilized by β-glucan gel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 390-398.
[27] AHMAD M, ASHRAF B, GANI A, et al. Microencapsulation of saffron anthocyanins using β-glucan and β-cyclodextrin: Microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion[J]. International Journal of Biological Macromolecules, 2018, 109: 435-442.
[28] SOBIERALSKA M, KUREK M A. Beta-glucan as wall material in encapsulation of elderberry (Sambucus nigra) extract[J]. Plant Foods for Human Nutrition, 2019, 74(3): 334-341.
[29] KUREK M A, MOCZKOWSKA M, PIECZYKOLAN E, et al. Barley β-D-glucan–modified starch complex as potential encapsulation agent for fish oil[J]. International Journal of Biological Macromolecules, 2018, 120: 596-602.
[30] LI R, ZENG Z, FU G, et al. Formation and characterization of tannic acid/beta-glucan complexes: Influence of pH, ionic strength, and temperature[J]. Food Research International, 2019, 120: 748-755.
[31] WU Z, MING J, GAO R, et al. Characterization and antioxidant activity of the complex of tea polyphenols and oat β-glucan[J]. Journal of Agricultural and Food Chemistry, 2011, 59(19): 10 737-10 746.
[32] GAO R, LIU H, PENG Z, et al. Adsorption of (-)-epigallocatechin-3-gallate (EGCG) onto oat β-glucan[J]. Food Chemistry, 2012, 132(4): 1 936-1 943.
[33] VEVERKA M, DUBAJ T, GALLOVIČ J, et al. β-glucan complexes with selected nutraceuticals: Synthesis, characterization, and stability[J]. Journal of Functional Foods, 2014, 8: 309-318.
[34] JIA X, LIU Q, ZOU S, et al. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity[J]. Carbohydrate Polymers, 2015, 117: 434-442.
[35] XU S, LIN Y, HUANG J, et al. Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water[J]. Journal of Materials Chemistry A, 2013, 1(13): 4 198.
[36] CHEN X, YAN J, WU J. Characterization and antibacterial activity of silver nanoparticles prepared with a fungal exopolysaccharide in water[J]. Food Hydrocolloids, 2016, 53: 69-74.
[37] LIU J, LI J, MA Y, et al. Synthesis, Characterization, and aqueous self-assembly of octenylsuccinate oat β-glucan[J]. Journal of Agricultural and Food Chemistry, 2013, 61(51): 12 683-12 691.
[38] WU Z, ZHAO C, LI R, et al. Insights into micellization of octenylsuccinated oat β-glucan and uptake and controlled release of β-carotene by the resultant micelles[J]. Journal of Agricultural and Food Chemistry, 2019, 67(26): 7 416-7 427.
[39] LIU J, LEI L, YE F, et al. Aggregates of octenylsuccinate oat β-glucan as novel capsules to stabilize curcumin over food processing, storage and digestive fluids and to enhance its bioavailability[J]. Food & Function, 2018, 9(1): 491-501.
[40] YANG W, GUO L, LI F, et al. Hydrophobically modified glucan as an amphiphilic carbohydrate polymer for micellar delivery of myricetin[J]. Molecules, 2019, 24(20): 3 747.
[41] KAWAHARA Y. (1→3)-β-D-glucan nanofibers from paramylon via electrospinning[J]. Carbohydrate Polymers, 2014, 112: 73-76.
[42] GRIP J, ENGSTAD R E, SKJAVELAND I, et al. Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice[J]. European Journal of Pharmaceutical Sciences, 2018, 121: 269-280.
[43] SAFAEE-ARDAKANI M R, HATAMIAN-ZARMI A, SADAT S M, et al. Electrospun schizophyllan/polyvinyl alcohol blend nanofibrous scaffold as potential wound healing[J]. International Journal of Biological Macromolecules, 2019, 127: 27-38.
[44] SOTO E R, OSTROFF G R. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery[J]. Bioconjugate Chemistry, 2008, 19(4): 840-848.
[45] SHEN R L, LIU X Y, DONG J L, et al. The gel properties and microstructure of the mixture of oat β-glucan/soy protein isolates[J]. Food Hydrocolloids, 2015, 47: 108-114.
[46] GANI A, SHAH A, AHMAD M, et al. β-D-glucan as an enteric delivery vehicle for probiotics[J]. International Journal of Biological Macromolecules, 2018, 106: 864-869.
[47] DA SILVA GUEDES J, PIMENTEL T C, DINIZ-SILVA H T, et al. Protective effects of β-glucan extracted from spent brewer yeast during freeze-drying, storage and exposure to simulated gastrointestinal conditions of probiotic lactobacilli[J]. LWT- Food Science and Technology, 2019, 116: 108 496.
[48] HUONG L M, THU H P, THUY N T B, et al. Preparation and antitumor-promoting activity of curcumin encapsulated by 1,3-β-glucan isolated from vietnam medicinal MushroomHericium erinaceum[J]. Chemistry Letters, 2011, 40(8): 846-848.
[49] LI S, ZHANG Y, XU X, et al. Triple helical polysaccharide-induced good dispersion of silver nanoparticles in water[J]. Biomacromolecules, 2011, 12(8): 2 864-2 871.
[50] KIM H, LEE J, LEE M H, et al. Evaluation of electrospun (1,3)-(1,6)-β-D-glucans/biodegradable polymer as artificial skin for full-thickness wound healing[J]. Tissue Engineering Part A, 2012, 18(21-22): 2 315-2 322.