研究报告

冷浸渍开始阶段接种戴尔有孢圆酵母(Torulaspora delbrueckii)对葡萄酒中挥发性成分和生物胺含量的影响

  • 张博钦 ,
  • 尤雅 ,
  • 成池芳 ,
  • 段长青 ,
  • 燕国梁
展开
  • 1(中国农业大学 食品科学与营养工程学院,葡萄与葡萄酒研发中心,北京,100083)
    2(农业农村部葡萄酒加工重点实验室,北京,100083)
    3(新疆中信国安葡萄酒业有限公司,新疆 昌吉,832200)
博士研究生(燕国梁副教授为通信作者,E-mail:glyan@cau.edu.cn)

收稿日期: 2020-03-11

  网络出版日期: 2020-08-17

基金资助

现代农业产业技术体系建设专项(CARS-29);新疆十三五重大专项“新疆特色酒庄葡萄酒酿造技术集成与产品开发”(2017A01001-3)

Effects of inoculating Torulaspora delbrueckii at the stage of cold maceration on the content of volatile compounds and biogenic amines in wine

  • ZHANG Boqin ,
  • YOU Ya ,
  • CHENG Chifang ,
  • DUAN Changqing ,
  • YAN Guoliang
Expand
  • 1(Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China)
    2(Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)
    3(Xinjiang CITIC Guoan Wine Company Limited, Changji 832200, China)

Received date: 2020-03-11

  Online published: 2020-08-17

摘要

为了提高干红葡萄酒的香气和安全品质,该研究在赤霞珠葡萄冷浸渍开始阶段接种不同浓度(0,1×106,1×107CFU/mL)的戴尔有孢圆酵母CVE-Td3(Torulaspora delbrueckii),并在冷浸渍结束后接种1×106CFU/mL的酿酒酵母(Saccharomyces cerevisiae EC1118)。通过顶空固相微萃取结合气相色谱-质谱联用技术(headspace solid phase microextraction combined with gas chromatography-mass spectrometry,HS-SPME-GC-MS)和高效液相色谱技术(high-performance liquid chromatography,HPLC)探究该酿造工艺对冷浸渍、酒精发酵和苹乳发酵后各实验组中挥发性香气成分和生物胺含量的影响。结果表明,接种1×107CFU/mL的CVE-Td3酵母能够显著增加葡萄酒中丁酸乙酯、辛酸乙酯、癸酸乙酯、乙酸异戊酯和苯乙醇的含量,与对照组(酿酒酵母单独发酵)相比分别提升了53.09%、17.66%、75.16%、28.75%和39.65%,增加葡萄酒中花香和果香的浓郁程度。同时显著降低了葡萄酒中组胺、腐胺、尸胺、精胺和苯乙胺的含量,分别下降了24.95%、68.42%、25.86%、40.98%和15.94%。该研究结果为生产优质安全的葡萄酒提供了实践指导。

本文引用格式

张博钦 , 尤雅 , 成池芳 , 段长青 , 燕国梁 . 冷浸渍开始阶段接种戴尔有孢圆酵母(Torulaspora delbrueckii)对葡萄酒中挥发性成分和生物胺含量的影响[J]. 食品与发酵工业, 2020 , 46(14) : 19 -27 . DOI: 10.13995/j.cnki.11-1802/ts.023928

Abstract

In order to improve the aroma and safety quality of dry red wines, we inoculated different levels (0,1×106,1×107 CFU/mL) of Torulaspora delbrueckii CVE-Td3 at the beginning stage of cold maceration of Cabernet Sauvignon grapes, and inoculated 1×106 CFU/mL Saccharomyces cerevisiae EC1118 at the end of cold maceration to complete fermentation. The contents of volatile aroma compounds and biogenic amines in trails after cold maceration, alcoholic fermentation and malolactic fermentation were analyzed by headspace solid phase microextraction combined with gas chromatography-mass spectrometry and high-performance liquid chromatography. The results showed that the inoculation of 1×107 CFU/mL of CVE-Td3 significantly increased the content of ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isoamyl acetate and phenylethyl alcohol, when compared to that of the control (Saccharomyces cerevisiae fermentation), with an increase of 274.96%, 21.43%, 47.37%, 34.37%, 35.10% and 46.18%, respectively, which could increase floral and fruity intensity of the wine. At the same time, it also significantly reduced the content of histamine, putrescine, cadaverine, spermine and phenylethylamine, with a decrease of 26.23%, 68.42%, 25.86%, 40.98%, 15.94%, respectively. This study provides practical guidance for producing high-quality and safety wines.

参考文献

[1] 李斌斌, 杜展成, 吴敏, 等. 冷浸渍处理对干红葡萄酒颜色品质及风味特征的影响[J]. 食品与机械, 2019,35(12):179-184.
[2] 周继亘, 杨学山, 祝霞, 等. 不同浸渍工艺对赤霞珠干红葡萄酒香气的影响[J]. 食品与生物技术学报, 2019,38(9):50-59.
[3] CAI J, ZHU B, WANG Y, et al. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters[J]. Food Chemistry, 2014,154:217-229.
[4] LUAN Y, ZHANG B, DUAN C, et al. Effects of different pre-fermentation cold maceration time on aroma compounds of Saccharomyces cerevisiae co-fermentation with Hanseniaspora opuntiae or Pichia kudriavzevii[J]. LWT - Food Science and Technology, 2018,92:177-186.
[5] HALL H, ZHOU Q, QIAN M C, et al. Impact of yeasts present during pre-fermentation cold maceration of Pinot noir grapes on wine volatile aromas[J]. American Journal of Enology and Viticulture, 2017,68(1):81-90.
[6] BENUCCI I, LUZIATELLI F, CERRETI M, et al. Pre-fermentative cold maceration in the presence of non-Saccharomyces strains: Effect on fermentation behaviour and volatile composition of a red wine[J]. Australian Journal of Grape and Wine Research, 2018,24(2):267-274.
[7] PADILLA B, GIL J V, MANZANARES P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity[J]. Frontiers in microbiology, 2016,7:411.
[8] DOMIZIO P, ROMANI C, LENCIONI L, et al. Outlining a future for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with saccharomyces cerevisiae for grape juice fermentation[J]. International Journal of Food Microbiology, 2011,147(3):170-180.
[9] COMITINI F, GOBBI M, DOMIZIO P, et al. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae[J]. Food Microbiology, 2011,28(5):873-882.
[10] JOLLY N, VARELA C, PRETORIUS I S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered[J]. FEMS Yeast Research, 2014,14(2):215-237.
[11] RENAULT P, COULON J, DE REVEL G, et al. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement[J]. International Journal of Food Microbiology, 2015,207:40-48.
[12] CHEN K, ESCOTT C, LOIRA I, et al. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines[J]. Food Microbiology, 2018,69:51-63.
[13] BENITO S. The impact of Torulaspora delbrueckii yeast in winemaking[J]. Applied Microbiology and Biotechnology, 2018,102(7):3 081-3 094.
[14] LIU P, LU L, DUAN C, et al. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation[J]. LWT - Food Science and Technology, 2016,71:356-363.
[15] ZHANG B, LUAN Y, DUAN C, et al. Use of Torulaspora delbrueckii co-fermentation with two Saccharomyces cerevisiae strains with different aromatic characteristic to improve the diversity of red wine aroma profile[J]. Frontiers in Microbiology, 2018,9:606.
[16] LAN Y, QIAN X, YANG Z, et al. Striking changes in volatile profiles at sub-zero temperatures during over-ripening of ‘Beibinghong’ grapes in Northeastern China[J]. Food Chemistry, 2016,212:172-182.
[17] NOGUEROL PATO R, GONZÁLEZ-ÁLVAREZ M, GONZÁLEZ-BARREIRO C, et al. Aroma profile of Garnacha Tintorera-based sweet wines by chromatographic and sensorial analyses[J]. Food Chemistry, 2012,134(4):2 313-2 325.
[18] RENAULT P E, ALBERTIN W, BELY M. An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions[J]. Applied Microbiology and Biotechnology, 2013,97(9):4 105-4 119.
[19] CIANI M, COMITINI F. Yeast interactions in multi-starter wine fermentation[J]. Current Opinion in Food Science, 2015,1:1-6.
[20] TAO Y, LI H, WANG H, et al. Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China)[J]. Journal of Food Composition and Analysis, 2008,21(8):689-694.
[21] SUMBY K M, GRBIN P R, JIRANEK V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects[J]. Food Chemistry, 2010,121(1):1-16.
[22] PEINADO R A, MORENO J, BUENO J E, et al. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration[J]. Food Chemistry, 2004,84(4):585-590.
[23] FERREIRA V, LÓPEZ R, CACHO J F. Quantitative determination of the odorants of young red wines from different grape varieties[J]. Journal of the Science of Food and Agriculture, 2000,80(11):1 659-1 667.
[24] AZZOLINI M, TOSI E, LORENZINI M, et al. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae[J]. World Journal of Microbiology & Biotechnology, 2015,31(2):277-293.
[25] BELY M, STOECKLE P, MASNEUF-POMARÈDE E, et al. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation[J]. International Journal of Food Microbiology, 2008,122(3):312-320.
[26] SWIEGERS J H, PRETORIUS I S. Yeast modulation of wine flavor[J]. Advances in Applied Microbiology,2005:131-175.
[27] TAO Y, ZHANG L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China)[J]. LWT - Food Science and Technology, 2010,43(10):1 550-1 556.
[28] PEINADO R A, MAURICIO J C, MORENO J. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis[J]. Food Chemistry, 2006,94(2):232-239.
[29] SÁNCHEZ PALOMO E, GARCÍA-CARPINTERO E G, ALONSO VILLEGAS R, et al. Characterization of aroma compounds of Verdejo white wines from the La Mancha region by odour activity values[J]. Flavour and Fragrance Journal, 2010,25(6):456-462.
[30] PINEAU B, BARBE J, VAN LEEUWEN C, et al. Which impact for β-Damascenone on red wines aroma?[J]. Journal of Agricultural and Food Chemistry, 2007,55(10):4 103-4 108.
[31] MANFROI L, SILVA P H A, RIZZON L A, et al. Influence of alcoholic and malolactic starter cultures on bioactive amines in Merlot wines[J]. Food Chemistry, 2009,116(1):208-213.
[32] MARQUES A P, LEITAO M C, ROMAO M V. Biogenic amines in wines: Influence of oenological factors[J]. Food Chemistry, 2008,107(2):853-860.
[33] 刘景, 任婧, 孙克杰. 食品中生物胺的安全性研究进展[J]. 食品科学, 2013,34(5):322-326.
[34] MEDINA K, BOIDO E, FARIÑA L, et al. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae[J]. Food Chemistry, 2013,141(3):2 513-2 521.
文章导航

/