研究报告

水溶性大豆多糖对马铃薯淀粉理化性能的影响

  • 焦昆鹏 ,
  • 马丽苹 ,
  • 张晓宇 ,
  • 罗磊 ,
  • 向进乐 ,
  • 樊金玲 ,
  • 杜琳
展开
  • 1(河南科技大学 食品与生物工程学院,河南 洛阳,471023)
    2(河南省食品绿色加工与质量安全控制国际联合实验室,河南 洛阳,471023)
    3(食品加工与安全国家级实验教学示范中心,河南 洛阳,471023)
硕士,实验师(马丽苹博士为通讯作者,E-mail:MLP@haust.edu.cn)

收稿日期: 2020-01-20

  网络出版日期: 2020-08-17

基金资助

河南省科技攻关项目(182102110043);国家自然科学基金项目(31401654)

Effect of soluble soybean polysaccharides on the physical and chemical properties of potato starch

  • JIAO Kunpeng ,
  • MA Liping ,
  • ZHANG Xiaoyu ,
  • LUO Lei ,
  • XIANG Jinle ,
  • FAN Jinling ,
  • DU Lin
Expand
  • 1(College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China)
    2(Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Luoyang 471023, China)
    3(National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China)

Received date: 2020-01-20

  Online published: 2020-08-17

摘要

该文采用布拉班德黏度仪、差示扫描量热仪、体外酶解和分光光度法等方法研究了添加水溶性大豆多糖对马铃薯淀粉黏度特性、糊化特性、消化特性及透明度、溶解度和膨胀力的影响。结果表明,水溶性大豆多糖添加量对马铃薯淀粉的糊化温度基本无影响;随着水溶性大豆多糖添加量的增加,马铃薯淀粉焓变缓慢增加,而透明度、溶解度和膨胀力下降;水溶性大豆多糖能降低马铃薯淀粉峰值黏度、崩解值和回生值,抑制马铃薯淀粉的水解与老化,增强马铃薯淀粉的抗消化性能。该研究可为水溶性大豆多糖在淀粉基食品中的应用提供指导。

本文引用格式

焦昆鹏 , 马丽苹 , 张晓宇 , 罗磊 , 向进乐 , 樊金玲 , 杜琳 . 水溶性大豆多糖对马铃薯淀粉理化性能的影响[J]. 食品与发酵工业, 2020 , 46(14) : 54 -59 . DOI: 10.13995/j.cnki.11-1802/ts.023431

Abstract

This paper aimed to explore the effects of soluble soybean polysaccharides on the physicochemical properties of potato starch. The effect of adding soluble soybean polysaccharides on the viscosity properties, gelatinization properties, digestion properties as well as transparency, solubility and swelling were determined using Brabender viscometer, differential scanning calorimetry, enzymatic hydrolysis in vitro and spectrophotometry method, respectively. The results showed that adding soluble soybean polysaccharides had no effect on the gelatinization temperature of potato starch. As the amount of soluble soybean polysaccharides increased, the enthalpy of potato starch increased slowly, however, its transparency, solubility and swelling power decreased. Adding soluble soybean polysaccharides could reduce the peak viscosity, breakdown and setback of potato starch, inhibit its hydrolysis and retrogradation, and enhance its antidigestibility. In conclusion, this study provides guidances for the application of soybean soluble polysaccharides in starch-based foods.

参考文献

[1] 王洁, 徐同成, 刘丽娜, 等. 马铃薯淀粉消化性能研究进展[J]. 中国食物与营养, 2016, 22(5): 34-37.
[2] 朱玉, 郭丽. 添加剂对马铃薯淀粉糊性质的影响[J]. 安庆师范学院学报: 自然科学版, 2015, 21(2): 81-84.
[3] 蔡旭冉, 徐祝萍, 徐忠东, 等. 瓜尔胶和黄原胶对马铃薯淀粉糊化特性影响的比较研究[J]. 食品工业科技, 2015, 36(21): 280-284.
[4] XIONG X, ZHAO L, CHEN Y, et al. Effects of alkali treatment and subsequent acidic extraction on the properties of soybean soluble polysaccharides[J]. Food and Bioproducts Processing, 2015, 94: 239-247.
[5] 杨慧娇,蔡志祥,张洪斌,等.水溶性大豆多糖的分子表征和溶液流变学性质[J].食品科学,2016,37(1):1-5.
[6] 熊晓辉,宋小琳,姚丽丽,等.普鲁兰多糖对大米淀粉糊化和老化特性的影响[J].食品工业科技,2013,34(4):156-158;163.
[7] 周裔彬,汪东风,宛晓春,等.茶多糖对面包粉及其淀粉糊化和老化特性的影响[J].农业工程学报,2009,25(S1):228-232.
[8] 赵阳,王慧云,陈海华,等.亚麻多糖对木薯淀粉和红薯淀粉糊物理性质的影响[J].中国粮油学报,2014,29(2):15-21.
[9] HEYMAN B, DE VOS W H, DEPYPERE F, et al. Guar and xanthan gum differentially affect shear induced breakdown of native waxy maize starch[J]. Food Hydrocolloids, 2014, 35: 546-556.
[10] KIM H S, BEMILLER J N. Effects of hydrocolloids on the pasting and paste properties of commercial pea starch[J]. Carbohydrate Polymers, 2012, 88(4): 1 164-1 171.
[11] FU Z, BEMILLER J N. Effect of hydrocolloids and salts on retrogradation of native and modified maize starch[J]. Food Hydrocolloids, 2017, 69: 36-48.
[12] ZHANG J, LUO K, ZHANG G. Impact of native form oat-glucan on starch digestion and postprandial glycemia[J]. Journal of cereal science, 2017, 73: 84-90.
[13] DARTOIS A, SINGH J, KAUR L, et al. Influence of guar gum on the in vitro starch digestibility—rheological and microstructural characteristics[J]. Food Biophysics, 2010, 5(3): 149-160.
[14] CHEN L, TIAN Y, ZHANG Z, et al. Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch[J]. Food Hydrocolloids, 2017, 63: 383-390.
[15] SASAKI T, KOHYAMA K. Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions[J]. Food Chemistry, 2012, 133(4): 1 420-1 426.
[16] SASAKI T, KOHYAMA K. Effect of non-starch polysaccharides on the in vitro digestibility and rheological properties of rice starch gel[J]. Food Chemistry, 2011, 127(2): 541-546.
[17] DHITAL S, DOLAN G, STOKES J R, et al. Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides[J]. Food & Function, 2014, 5(3): 579-586.
[18] BAI Y, WU P, WANG K, et al. Effects of pectin on molecular structural changes in starch during digestion[J]. Food Hydrocolloids, 2017, 69: 10-18.
[19] RAMÍREZ C, MILLON C, NUÑEZ H, et al. Study of effect of sodium alginate on potato starch digestibility during in vitro digestion[J]. Food Hydrocolloids, 2015, 44: 328-332.
[20] 汪名春, 韦冷云, 朱培蕾, 等. 菊糖对马铃薯淀粉糊流变特性及体外消化的影响[J]. 中国粮油学报, 2016, 36 (6): 47-51.
[21] 罗登林, 李云, 武延辉,等. 短链菊粉对玉米磷酸酯双淀粉热力学特性的影响[J].食品科学, 2016, 37(7):6-10.
[22] 朱海霞, 石瑛, 张庆娜,等. 3,5- 二硝基水杨酸(DNS)比色法测定马铃薯还原糖含量的研究[J]. 中国马铃薯,2005,19(5): 266-269.
[23] BHATTACHARJEE P, KULKARNI P R. A comparative study on the physical characteristics and cooking quality parameters of commercial brands of basmati rice[J]. International Journal of Food Sciences and Nutrition, 2000, 51(4): 295.
[24] FUNAMI T, NAKAUMA M, NODA S, et al. Effects of some anionic polysaccharides on the gelatinization and retrogradation behaviors of wheat starch: Soybean-soluble polysaccharide and gum arabic[J]. Food Hydrocolloids, 2008, 22: 1 528-1 540.
[25] LIU D, LI Z, FAN Z, et al. Effect of soybean soluble polysaccharide on the pasting, gels, and rheological properties of kudzu and lotus starches[J]. Food Hydrocolloids, 2019, 89: 443-452.
[26] SHENG L, LI P, WU H Z, et al. Tapioca starch-pullulan interaction during gelation and retrogradation[J]. LWT, 2018, 96: 432-438.
[27] 谭永辉, 李俊, 李军国, 等. 水溶性大豆多糖对淀粉老化特性的影响[J]. 食品工业科技, 2008 (4): 93-94.
[28] 王思远,齐军茹,杨晓泉.大豆多糖对大米淀粉糊化及凝胶特性的影响[J].中国酿造,2011(7):155-158.
[29] 谭永辉,李俊,李军国,等.水溶性大豆多糖对淀粉糊化特性的影响[J].食品研究与开发,2008(3):51-54.
[30] KONG X, ZHU Z, ZHANG X, et al. Effects of Cordyceps polysaccharides on pasting properties and in vitro starch digestibility of wheat starch[J]. Food Hydrocolloids, 2020, 102: 105 604.
[31] SHAFIE B, CHENG S, LEE H, et al. Characterization and classification of whole-grain rice based on rapid visco analyzer pasting profile[J]. International Food Research Journal, 2016,23(5): 2 138-2 143.
[32] 汪名春, 韦冷云, 朱培蕾, 等. 菊糖对小麦淀粉糊热力学及流变学特性的影响[J]. 中国粮油学报, 2017, 32(2): 24-29.
[33] 李远,辛士刚,赵秀红,等.瓜尔豆胶对马铃薯淀粉消化性和糊化特性的影响[J].食品工业科技,2019,40(8):61-65;72.
[34] 罗舜菁, 汪志宇, 刘成梅, 等. 动态高压微射流改性可溶性大豆多糖对大米淀粉理化性质的影响[J]. 高压物理学报, 2014, 28(5): 617-624.
[35] BEMILLER J N. Pasting, paste, and gel properties of starch–hydrocolloid combinations[J]. Carbohydrate polymers, 2011, 86 (2): 386-423.
[36] BILIADERIS C G, ARVANITOYANNIS I, IZYDORCZYK M S, et al. Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels[J]. Starch/Stärke, 1997,49:278-283.
[37] 田龙,李俊涛.微孔淀粉的半干法制备条件及其理化特性研究[J]. 粮食与饲料工业, 2018(3):15-19.
[38] 刘瑞,冯佰利,晁桂梅,等.苦荞淀粉颗粒及淀粉糊性质研究[J].中国粮油学报,2014,29(12):31-36.
[39] 李松南, 李雅琴, 金姗姗, 等. 短柄枹栎种子淀粉的理化性质研究[J]. 食品研究与开发, 2016,37(15): 56-60.
[40] YURIS A, GOH K K T, HARDACRE A K, et al. Understanding the interaction between wheat starch and Mesona chinensis polysaccharide[J]. LWT, 2017, 84: 212-221.
[41] HOOVER R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review[J]. Carbohydrate Polymers, 2001, 45 (3): 253-267.
[42] 张丽珍, 冀佩双, 罗旭枭, 等. 糜黍淀粉理化性质及消化特性[J]. 食品科学, 2016, 37(19): 76-81.
[43] HOLM J, LUNDQUIST I, BJÖRCK I, et al. Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats[J]. The American Journal of Clinical Nutrition, 1988, 47(6): 1 010-1 016.
[44] WANG Y, YANG Z, WEI X. Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods[J]. International Journal of Biological Macromolecules, 2010, 47(4): 534-539.
[45] XU Y, GUO Y, GAO Y, et al. Seperation, characterization and inhibition on α-glucosidase, α-amylase and glycation of a polysaccharide from blackcurrant fruits[J]. LWT, 2018, 93: 16-23.
文章导航

/