该文研究商业酸提法所得紫色百香果皮果胶(passion fruit pectin,PFP)的单糖组成、分子特征以及Ca2+和Zn2+致流变特性的变化, 以了解其在特殊流质食品应用的潜力。结果显示,PFP含有80.5%总糖醛酸, 酯化度75.2%, 单糖组成中半乳糖醛酸占78.5% (同质半乳糖醛酸聚糖占74.3%), 单糖组成近似商业柑橘高甲氧基果胶,其重均分子质量(Mw)为190.5 kDa; 固有黏度[η]为6.09 dL/g, 马克-霍温-樱田(Mark-Houwink-Sakurada)关系式([η]=K×Mwa)指数α为0.875; 环动半径Rg为44.5 nm, 水合动态半径Rh为25.6 nm, Rg/Rh为1.74。稳剪切测定结果显示,0.01~0.05 mol/L Ca2+或Zn2+可显著提高PFP溶液的剪切应力、表观黏度, 并提高稠度系数K和降低流体行为指数n (即提高剪切稀化现象), 在 0.05 mol/L Ca2+或0.02~0.05 mol/L Zn2+时效果最大,且Ca2+效果大于Zn2+。综合而言, Ca2+与 Zn2+添加可促使PFP溶液产生高屈服应力、高表观黏度及高K值-低n值。该研究结果可作为百香果皮果胶在特殊流质食品应用的重要依据。
The aim of this study was to identify the monosaccharide composition, molecular characteristics, and Ca2+ and Zn2+ induced rheological changes of passion fruit pectin (PFP) prepared by commercial acid extraction in order to understand the possibility of PFP applications in special fluid foods. The results indicated that PFP contained 80.5% uronic acids, degree of esterification=75.2%, and 78.5% galacturonic acid (where 74.3% homogalacturonans) in its monosaccharide composition. The monosaccharide compositions were very similar to those of commercial citrus high methoxy pectin. PFP showed, in average, a weight-averaged molecular weight=190.5 kDa; intrinsic viscosity [η]=6.09 dL/g; Mark-Houwink-Sakurada exponent a=0.875; gyration of radius (Rg)=44.5 nm; hydrodynamic radius (Rh)=25.6 nm; and Rg/Rh ratio=1.74. The results of steady-shear viscosity measurements displayed that the shear stress and apparent viscosity of PFP solution enhanced significantly in the presence of 0.01-0.05 mol/L Ca2+ or Zn2+, which accompanied with the increased consistency constant K and lessened flow behavior index n, greater shear-thinning behavior. The cation effects were greatest at 0.05 mol/L Ca2+ or 0.02-0.05 mol/L Zn2+; and Ca2+ > Zn2+. Conclusively, the addition of Ca2+ and Zn2+ improved the PFP solution of high yield stress, high apparent viscosity, and high K-low n combination. The results of this study could be an important basis for PFP applications in special fluid foods.
[1] CAFFALL K H, MOHNEN D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides [J]. Carbohydrate Research, 2009, 344(14):1 879-1 900.
[2] YAPO B M, LEROUGE P, THIBAULT J F, et al. Pectins from citrus peel cell walls contain homogalacturonans homogeneous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II [J]. Carbohydrate Polymers, 2006,69(3):426-435.
[3] AI L, CHUNG Y C, LIN S Y, et al. Active pectin fragments of high in vitro antiproliferation activities toward human colon adenocarcinoma cells: Rhamnogalacturonan II [J]. Food Hydrocolloids, 2018, 83:239-245.
[4] ROLIN C. Pectin. Industrial Gums-Polysaccharides and Their Derivatives [M]. 3rd ed. London: Academic Press, Inc., 1993: 257-293.
[5] PINHEIRO E R, SILVA I M D A, GONZAGA L V, et al. Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology [J]. Bioresource Technology, 2008, 99(13):5 561-5 566.
[6] KLIEMANN E, SIMAS K N, AMANTE E R, et al. Optimisation of pectin acid extraction from passion fruit peel (Passiflora edulis flavicarpa) using response surface methodology [J]. International Journal of Food Science and Technology, 2009, 44(3):476-483.
[7] FREITAS DE OLIVEIRA C, GIORDANI D, LUTCKEMIER R, et al. Extraction of pectin from passion fruit peel assisted by ultrasound [J]. LWT - Food Science and Technology, 2016, 71:110-115.
[8] VASCO-CORREA J, ZAPATA ZAPATA A D. Enzymatic extraction of pectin from passion fruit peel (Passiflora edulisf. flavicarpa) at laboratory and bench scale [J]. LWT - Food Science and Technology, 2017, 80:280-285.
[9] GUO R, TIAN S, LI X, et al. Pectic polysaccharides from purple passion fruit peel: A comprehensive study in macromolecular and conformational characterizations[J]. Carbohydrate Polymers, 2020, 229:115 406.
[10] KYOMUGASHO C, GWALA S, CHRISTIAENS S, et al. Pectin nanostructure influences pectin-cation interactions and in vitro-bioaccessibility of Ca2+, Zn2+, Fe2+ and Mg2+-ions in model systems [J]. Food Hydrocolloids, 2017, 62:299-310.
[11] KHOTIMCHENKO M Y, KOLENCHENKO E A, KHOTIMCHENKO Y S. Zinc-binding activity of different pectin compounds in aqueous solutions [J]. Journal of Colloid and Interface Science, 2008, 323(2):216-222.
[12] BLUMENKRANTZ N, ASBOE-HANSEN G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry, 1973, 54(2), 484-489.
[13] GB 03-090-30900 Food Chemical Codex [S]. Washington: Bibliographic Information,1981.
[14] RAO M A. Rheology of Fluid and Semisolid Foods –Principle and Applications[M]. 2nd Ed. New York: Springer Science+Business Media, 2007:27-28.
[15] FRACASSO A F, PERUSSELLO C A, CARPINÉ D, et al. Chemical modification of citrus pectin: Structural, physical and rheological implications [J]. International Journal of Biological Macromolecules, 2018, 109:784-792.
[16] 刘江, 雷激, 张俊,等. 不同提取方法对柠檬皮渣果胶特性的影响[J]. 食品与发酵工业, 2019, 45(23):199-206.
[17] 中华人民共和国卫生部. GB 25533—2010 食品安全国家标准-食品添加剂果胶[S]. 北京:中国标准出版社, 2011.
[18] MASUELLI M A. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties [J]. International Journal of Biological Macromolecules, 2011, 48(2):286-291.
[19] HARDING S E, ABDELHAMEED A S, MORRIS G A. On the hydrodynamic analysis of conformation in mixed biopolymer systems [J]. Polymer International, 2011, 60 (1):2-8.
[20] TANDE B M, WAGNER N J, MACKAY M E, et al. Viscometric, hydrodynamic, and conformational properties of dendrimers and dendrons[J]. Macromolecules, 2001, 34(24):8 580-8 585.
[21] 张兆琴, 梁瑞红, 刘伟,等. 橙皮果胶流变学性质的影响因素[J]. 食品研究与开发, 2010, 31(1):31-35.
[22] 彭小燕, 木泰华, 张苗等. 超高压下Ca2+与 Na+离子对甜菜果胶结构及流变性质的影响[J]. 中国农业科学, 2015, 48(21):4 335-4 346.
[23] MIERCZYŃSKA J, CYBULSKA J, ZDUNEK A. Rheological and chemical properties of pectin enriched fractions from different sources extracted with citric acid[J]. Carbohydrate Polymers, 2017, 156:443-451.
[24] NORZIAH M H, KONG S S, KARIM A A, et al. Pectin-sucrose-Ca2+ interactions: Effects on rheological properties[J]. Food Hydrocolloids, 2001, 15(14):491-498.
[25] HAN W, MENG Y, HU C, et al. Mathematical model of Ca2+ concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin [J]. Food Hydrocolloids, 2017, 66:37-48.
[26] MORRIS E, POWELL D, GIDLEY M, et al. Conformations and interactions of pectins: Polymorphism between gel and solid states of calcium polygalacturonate [J]. Journal of Molecular Biology, 1982, 155(4):507-516.
[27] SAAVEDRA ISUSI G I, KARBSTEIN H P, VAN DER SCHAAF U S. Microgel particle formation: influence of mechanical properties of pectin-based gels on microgel particle size distribution [J]. Food Hydrocolloids, 2019, 94:105-113.
[28] WINDHAB E J. Physico-Chemical Aspects of Food Processing[M]. London: Chapman & Hall, 1995: 80-116.
[29] RAO M A. Rheology of Fluid, Semisolid, and Solid Foods, Food Engineering Series[M]. New York: Springer Science+Business Media, 2014: 416-456.
[30] HADDE E K, CHEN J. Shear and extensional rheological characterization of thickened fluid for dysphagia management [J]. Journal of Food Engineering, 2019, 245:18-23.