将γ-聚谷氨酸(poly-γ-glutamic acid,γ-PGA)按一定比例加入面粉中,研究γ-PGA对面条面团基础流变学、微观结构、糊化特性、水分分布的影响。结果表明,随着γ-PGA添加量(质量分数为0.00%~1.50%)的增加,面条面团的拉伸最大力和拉伸面积先增大后减小;在添加量为0.75%时,损耗模量(G″)和损耗因子tanδ都达到最大值,在添加量为1.00%时,储能模量(G')达到最小值;随着γ-PGA添加量的增加,面筋网络微观结构变得不均匀,疏松,网络被破坏,淀粉颗粒之间间隙变大,淀粉膨胀,形状变得不规则;添加γ-PGA使面条面团粉峰值黏度,衰减值及峰值时间降低,糊化温度升高,在γ-PGA添加量为1.00%~1.25%时回生值降低;添加γ-PGA的面条面团对弱结合水的束缚能力增强,面条面团中结合水含量减少,弱结合水含量增加。添加0.75%γ-PGA制得的面条最佳。
Poly-γ-glutamic acid (γ-PGA) can affect the properties of dough and improve the quality of noodles. To further study the specific mechanism of action of poly-γ-glutamic acid on noodle dough, Poly-γ-glutamic acid was added to flour in a certain proportion. The effects of γ-PGA on the basic rheology, microstructure, pasting properties and water distribution of noodle dough were studied. The results showed that the maximum tensile force and the stretched area of the noodle dough both increased first and then decreased with the increase of γ-PGA in the range of 0.00%-1.50%. The loss modulus and the loss factor both reached maximum when the addition amount was 0.75%, and G'reached the minimum value when the addition amount was 1.00%. Moreover, with the increase of the amount of γ-PGA (0.00%-1.50%), the microstructure of the gluten network became uneven, loose and damaged. And the gap between the starch particles became larger, and the starch swelled and became irregular. Furthermore, the addition of γ-PGA also reduced the peak viscosity, breakdown value and peak time of noodle dough powder. Additionally, the pasting temperature increased and the setback value decreased when the amount of γ-PGA was 1.00% to 1.25%. The noodle dough added with γ-PGA had a stronger binding force to weakly bound water, the content of bound water decreased and the content of weakly bound water increased. The best quality noodles were obtained with 0.75% γ-PGA addition.
[1] SHIH I, VAN Y. The production of poly-(γ-glutamic acid) from microorganisms and its various applications[J]. Bioresource Technology, 2001, 79(3):207-225.
[2] 王国良, 关阳, 张秀荣, 等. γ-聚谷氨酸在食品中的功能性研究进展[J]. 食品工业, 2013,34(10):210-213.
[3] CHIUNG-YUAN LEE M K. Effect of g-polyglutamate on the rheological properties and microstructure of tofu[J]. Food Hydrocolloids, 2011,25:1 034-1 040.
[4] MITSUIKI M, MIZUNO A, TANIMOTO H, et al. Relationship between the antifreeze activities and the chemical structures of oligo- and poly(glutamic acid)[J]. Journal of Agricultural and Food Chemistry, 1998, 46(3):891-895.
[5] 李超然, 吴坤, 刘燕琪, 等. γ-聚谷氨酸对面团性质及面条质构特性的影响[J]. 河南农业大学学报, 2014,48(2):204-209.
[6] LIM S, KIM J, SHIM J, et al. Effect of poly-γ-glutamic acids (PGA) on oil uptake and sensory quality in doughnuts[J]. Food Science and Biotechnology, 2012, 21(1):247-252.
[7] 姬晓月, 王双燕, 耿鹏, 等. γ-聚谷氨酸对速冻水饺品质的影响[J]. 食品与发酵工业, 2018,44(12):180-187.
[8] 王杰. γ-聚谷氨酸对淀粉特性的影响研究[D]. 郑州: 河南农业大学, 2016.
[9] 姬晓月. γ-聚谷氨酸对小麦面筋蛋白特性影响的研究[D]. 郑州: 河南农业大学, 2018.
[10] 刘劲哲. 小麦面团流变学特性与馒头品质分析[J]. 粮食储藏, 2016(45): 28-32.
[11] 杨玉玲, 关二旗, 李萌萌, 等. 不同和面方式对面团流变特性及面条品质的影响[J]. 河南工业大学学报(自然科学版), 2019,40(5):18-24;52.
[12] 张华文, 田纪春, 邓志英, 等. 拉伸仪和质构仪测定面团拉伸特性的比较分析[J]. 作物学报, 2005(11):137-139.
[13] WANG K, LUO S, CAI J, et al. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure[J]. Food Chemistry, 2016,197:168-174.
[14] DEKKERS B L, EMIN M A, BOOM R M, et al. The phase properties of soy protein and wheat gluten in a blend for fibrous structure formation[J]. Food Hydrocolloids, 2018,79:273-281.
[15] SHENG X, MA Z, LI X, et al. Effect of water migration on the thermal-vacuum packaged steamed buns under room temperature storage[J]. Journal of Cereal Science, 2016,72:117-123.
[16] LINDSAY M P, SKERRTT J H, et al. The glutenin macropolymer of wheat flour doughs: Structure-function perspectives[J]. 1999,10(8):247-253.
[17] 陈洁, 汪磊, 吕莹果, 等. 食盐对烩面面团品质和面筋网络结构的影响[J]. 中国粮油学报, 2017,32(4):24-30.
[18] 曹名锋, 金映虹, 解慧, 等. γ-聚谷氨酸的微生物合成、相关基因及应用展望[J]. 微生物学通报, 2011,38(3):388-395.
[19] HU Y, WANG L, LI Z. Modification of protein structure and dough rheological properties of wheat flour through superheated steam treatment[J]. Journal of Cereal Science, 2017,76:222-228.
[20] PENG B, LI Y, DING S, et al. Characterization of textural, rheological, thermal, microstructural, and water mobility in wheat flour dough and bread affected by trehalose[J]. Food Chemistry, 2017,233:369-377.
[21] LI Q, LIU R, WU T, et al. Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy[J]. Food Research International, 2017,95:19-27.
[22] 张可欣, 蒋慧, 汤晓娟, 等. 复合酶制剂对甜酒酿面包发酵烘焙特性的影响[J]. 食品科学, 2018,39(1):16-21.
[23] 张康逸, 康志敏, 王继红, 等. 青麦粉添加对馒头面团及面筋蛋白结构的影响[J]. 现代食品科技, 2019,35(2):82-88.
[24] 马永强, 韩春然, 石忠志, 等. 小麦醇溶蛋白的研究进展[J]. 食品科学, 2006,27(12):813-817.
[25] 郭晓娟, 刘成梅, 吴建永, 等. 亲水胶体对淀粉理化性质影响的研究进展[J]. 食品工业科技, 2016,37(6):367-371.
[26] SHYU Y, HWANG J, HSU C. Improving the rheological and thermal properties of wheat dough by the addition of γ-polyglutamic acid[J]. LWT - Food Science and Technology, 2008,41(6):982-987.
[27] 王军, 程晶晶, 王周利, 等. 黑小豆超微全粉对面团流变学特性及馒头品质的影响[J]. 中国食品学报, 2019,19(1):103-110.
[28] 左小博. 亲水性胶体对大米淀粉物化特性的影响[D]. 杭州: 浙江工商大学, 2016.
[29] 张煌, 马永生, 李逸群, 等. 压延工艺对面团微观结构及水分分布的影响[J]. 食品工业, 2016,37(7):210-215.
[30] JIA C, YANG W, YANG Z, et al. Study of the mechanism of improvement due to waxy wheat flour addition on the quality of frozen dough bread[J]. Journal of Cereal Science, 2017,75:10-16.
[31] 张艳荣, 郭中, 刘通, 等. 微细化处理对食用菌五谷面条蒸煮及质构特性的影响[J]. 食品科学, 2017,38(11):110-115.
[32] 姜绍通, 钟昔阳, 潘丽军, 等. 超高压改性谷朊粉对面条加工品质的影响[J]. 农业机械学报, 2010,41(3):153-157.