建立了简便、高效、灵敏的液相色谱-串联质谱分析监测马铃薯中主要糖苷生物碱α-茄碱和α-卡茄碱的方法。样品经酸化甲醇提取后,用无水硫酸钠和无水乙酸镁吸收多余的水分后离心,乙腈和甲酸-甲酸铵缓冲溶液为流动相,梯度洗脱,流速为0.4 mL/min,柱温为40 ℃,进样量为5 μL,提取物经色谱柱分离,在电喷雾正离子模式下,采用四级杆质谱仪进行多反应分析。在实验浓度范围内,α-茄碱和α-卡茄碱标准曲线线性良好,相关系数(R2)均大于0.999;在10、50及100 ng/mL添加浓度水平,所得2种分析物的回收率为98.9%~101.6%,相对标准偏差为0.18%~1.41%,检出限和定量限分别为0.3 mg/kg和1.0 mg/kg。对样品进行了分析,并与文献报道方法的前处理提取效果进行了对比,该方法可达到比已知方法更好的效果。对样品加标后分别用该方法和补充方法对比分析,该方法的加标回收率远高于补充方法的加标回收率,进一步证明了该方法的可行性。结果表明,该法操作简单、重现性好、准确度高,完全满足马铃薯中主要糖苷生物碱α-茄碱和α-卡茄碱的分析监测。
A simple, efficient and sensitive method for the determination of α-solanine and α-chaconine in potato was established. Samples were extracted with acidified methanol and then absorbed with excess water by anhydrous sodium sulfate and magnesium acetate. After centrifugation, the acetonitrile and formic acid ammonium buffer solution were mobile phase, gradient elution, the flow rate was 0.4 mL/min, the column temperature was 40 degrees, the injection volume was 5μL, the extract was separated by chromatographic column, and the multi reaction analysis was carried out by four level mass spectrometer under the electrospray ionization mode. In the experimental concentration range, the standard curves of α-solanine and α-chaconine are well linear, and the correlation coefficient (R2) is greater than 0.999; at the concentration levels of 10, 50 and 100 ng/mL, the recoveries of the two analytes are 98.9%-101.6%, the relative standard deviation is 0.18%-1.41%, the detection limit and quantitative limit are 0.3 mg/kg and 1.0 mg/kg respectively. The sample was analyzed and compared with the pre-treatment extraction results reported in the literature. This method can achieve better results than the known methods. Compared with the supplementary method, the recovery rate of this method is much higher than that of the supplementary method, which further proves the feasibility of this method. The results showed that the method was simple, reproducible and accurate, and could be used for the analysis and monitoring of the major glycoside alkaloids in potato.
[1] MENDEL FRIEDMAN,CAROL E LEVIN. a-Tomatine content in tomato and tomato products determined by hplc with pulsed amperomet-ric detection[J]. J Agric Food Chem, 1995, 43(6):1 507-1 511.
[2] 徐敏慧,刘珂伟,张晓慧,等.马铃薯中龙葵素的研究进展[J].保鲜与加工, 2017, 17(1):112-116.
[3] FRIEDMAN M. Analysis of biologically active compounds in pota-toes (Solanum tuberosum), tomatoes(Lycopersicon esculen-tum), and jimson weed (Datura stramonium) seeds[J]. J. Chro-matogr A, 2004, 1 054(1-2):143-155.
[4] MENDEL FRIEDMAN. Tomato glycoalkaloids: role in the plant and in the diet[J]. J Agric Food Chem, 2002, 50(21): 5 751-5 780.
[5] FRIEDMAN M, MCDONALD G. Potato glycoalkaloids: Chemistry, analysis, safety and plant physiology[J]. Crit Rev Plant Sci, 1997, 16(1):55-132.
[6] CATCHPOLE G S, BECKMANN M, ENOT D P, et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops[J]. Proc Natl Acad Sci USA, 2005, 102(40):14 458-14 462.
[7] FRIEDMAN D, DAO L. Distribution of glycoalkaloids in potato plants and commercial potato products [J]. Journal of Agricultural and Food Chemistry, 2002, 40(3):419-423.
[8] FRIEDMAN M, LEVIN C E. a- tomatine content in tomato and tomato products determined by HPLC with pulsed amperometric detection [J]. Journal of Agricultural and Food Chemistry, 1995, 43 (6):1 507-1 511.
[9] GRUNENFELDER L A,KNOWLES L 0, HILLER L K, et al. Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L) [J]. Journal of Agricultural and Food Chemistry, 2006, 54(16):5 847-5 854.
[10] ROMANUCCI V, PISANTI A, FABIO G D, et al.Toxin levels in different variety of potatoes: Alarming contents of α- chaconine [J].Phytochemistry Letters, 2016, 16:103-107.
[11] 吴延.马铃薯主粮化的关键与种植技术[J].农村新技术, 2015(4):4-6.
[12] 平华,马智宏,李杨,等.不同发芽天数及芽周不同深度马铃薯中a-茄碱含量变化规律[J].食品科技, 2017,42(1):55-59.
[13] 李志文,王娜,刘翔,等.马铃薯中a-茄碱提取工艺优化[J]. 食品与机械,2 (8):167-172.
[14] 赵建宗,申建平.我国马铃薯种薯质量监督控制体系现状、问题与建议[J].种子, 2017,36(12):92-94.
[15] 马全胜.马铃薯中毒的防治措施[J].中兽医学杂志, 2017(5):32.
[16] 王运雷,张辉.马铃薯皮、马铃薯渣、块茎中α-茄碱含量的测定[J].畜牧与饲料科学, 2018,39(5):19-21.
[17] 邵慧凯,丘汾,何佳平,等.异丁醇萃取-高效液相色谱法测定马铃薯中α-卡茄碱[J]. 中国食品卫生杂志, 2015,27(5): 517-520.
[18] 赵丹青,张锋锋,吴燕,等.宁夏不同地区不同品种马铃薯中龙葵素在不同生长期的积累含量测定[J].中国野生植物资源, 2017,36(6):29-31.
[19] 商婷婷,邝梦婷,胡新喜,等. HPLC-ELSD法同时测定马铃薯中α-茄碱和α-卡茄碱含量[J].食品与机械, 2015,31(4):55-58.
[20] 罗爱花,徐美蓉,陆立银,等.利用HPLC法测定不同马铃薯品种茎叶中的α-茄碱含量[J].中国马铃薯, 2014,28(6):331-334.
[21] 王守兰,朱佳.高效液相色谱法测定马铃薯中α-茄碱的含量[J].食品科学,1996,17(6):60-61.
[22] 肖文军,李勤,熊兴耀,等.高效液相色普法分析马铃薯中α-茄碱[J].分析化学, 2011, 39(9):1 459-1 460.
[23] 张舵.反相高效液相色潽法检测马铃薯中龙葵素含量[J].齐齐哈尔大学学报, 2013,29(5):24-25.
[24] 曾凡逵,周添红,康宪学,等. HPLC法测定马铃薯块茎中糖苷生物碱的含量[J].中国马铃薯, 2015, 29(5):263-268.
[25] FANG L, WAN M, PENNACCHIO M, et al. Evaluation of evaporative light- scattering detector for combinatorial library quantitation by reversed phase HPLC[J]. J.Comb Chem, 2000, 2(3):254-257.
[26] ROBERT J HOUBEN, KOMMER BRUNT. Determination of glycoalkα-loids in potato tubers by reversed high-performance liquid chromatography[J]. Journal of Chromatography A, 1994, 661(1-2):169-174.
[27] LAN DAO, MENDEL FRIEDMAN. Comparison of glycoalkaloid content of fresh and freeze-dried potato leaves determined by HPLC and colormetry[J]. Agric Food Chem, 1996, 8:2 287-2 291.
[28] SOTELO A, SERRANO B. High-performance liquid chromatographic determination of the glycoalkaloids alphα-solanine and α-chaconine in 12 commercial varieties of Mexican potato [J]. J Ag ric Food Chem, 2000, 48(6):2 472-2 475.
[29] 王建凤,范筱京,贾丽,等.超高液相色谱串联质谱法检测土豆及土豆制品中α-茄碱[J].食品安全质量检测学报, 2017, 8(7): 2 756-2 761.
[30] 刘红河,康莉,廖仕成,等.超高效液相色谱-质谱法测定食物中毒样品中α-茄碱和α-卡茄碱[J].华南预防医学, 2016, 42(5): 435-442.
[31] 伍慧敏,曾静,李美,等.液相色谱-质谱联用法检测马铃薯中α-茄碱含量[J].食品科学, 2013, 34(24):121-124.
[32] 戴超,郑鹭飞,刘佳萌,等. 液质联用法分析贮藏因素对马铃薯中α-茄碱含量的影响[J].核农学报, 2017, 31(11): 2 200-2 205.
[33] 张春娇, 张秀杰, 潘赛超, 等.高效液相色谱串联质谱法检测马铃薯及马铃薯粉中α-茄碱和α-卡茄碱含量[J].食品工业与科技, 2019, 40(21):225-230.
[34] 王丹,丁颢,程莉,等.超高效液相色谱-三重四级杆串联质谱法测定土豆中α-茄碱与α-卡茄碱含量[J].中国食品卫生杂志, 2014, 26(3):233-237.
[35] 张秀尧,蔡欣欣,张晓艺.超高效液相色谱-三重四极杆质谱联用方法测定血浆和尿液中的α-龙葵碱、α-卡茄碱和茄啶[J].色谱, 2014, 32 (6):586-590.