提高微藻耐盐性可减少培养过程对淡水资源的依赖,从而降低微藻基产品的生产成本。对高产叶黄素的小球藻(Chlorella sorokiniana) FZU60进行高盐度适应性驯化,分析了驯化过程藻细胞生长及细胞组成的变化,并对比了耐盐株和原始株的叶黄素生产情况。结果表明,经过长期的高盐度适应性驯化培养,最终可获得在50 g/L盐度下正常生长的小球藻FZU60耐盐藻株。与原始株相比,耐盐藻株的细胞体积增大、藻体颜色加深,其油脂和蛋白质质量分数均有所提高,色素含量无显著变化,但碳水化合物含量降低。在30 g/L盐度下,耐盐株具有较高的生物量产率767.89 mg/(L·d)和叶黄素产率5.62 mg/(L·d),分别比原始株提高了20.34%和20.31%。筛选获得的小球藻FZU60耐盐藻株具有更高的叶黄素生产能力,可为利用海水进行微藻叶黄素生产及降低生产成本提供合适的藻种来源。
[1] RUDALL P J.An introduction to plant structure and development: Plant anatomy for the twenty-first century[J]. Annals of Botany,2011,36(2): 520.
[2] SUN Z,LI T,ZHOU Z G,et al.Microalgae as a source of lutein: Chemistry,biosynthesis,and carotenogenesis[J]. Microalgae Biotechnology,2016,153: 37-58.
[3] LIN J H,LEE D J,CHANG J S.Lutein production from biomass: marigold flowers versus microalgae[J]. Bioresource Technology,2015,184: 421-428.
[4] ACIÉN F G,FERNNDEZ J M,MAGN J J,et al. Production cost of a real microalgae production plant and strategies to reduce it[J]. Biotechnology Advances,2012,30(6): 1 344-1 353.
[5] BOROWITZKA M A,MOHEIMANI N R.Sustainable biofuels from algae[J]. Mitigation and Adaptation Strategies for Global Change,2013,18(1): 13-25.
[6] DRAGOSITS M,MATTANOVICH D.Adaptive laboratory evolution-principles and applications for biotechnology[J]. Microbial Cell Factories,2013,12(1): 64.
[7] KATO Y,HO S H,VAVRICKA C J,et al.Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching[J]. Bioresource Technology,2017,245: 1 484-1 490.
[8] FERNNDEZ-SEVILLA J M,FERNNDEZ F G A,GRIMA E M. Biotechnological production of lutein and its applications[J]. Applied Microbiology and Biotechnology,2010,86(1): 27-40.
[9] XIE Y P,LI J,MA R,et al.Bioprocess operation strategies with mixotrophy/photoinduction to enhance lutein production of microalga Chlorella sorokiniana FZU60[J]. Bioresource Technology,2019,290: 121 798.
[10] XIE Y P,HO S H,CHEN C N,et al.Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration,light intensity and fed-batch operation[J]. Bioresource Technology,2013,144: 435-444.
[11] XIE Y P,ZHAO X R,CHEN J F,et al.Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt[J]. Bioresource Technology,2017,244: 664-671.
[12] XIE Y P,LU K Y,ZHAO X R,et al. Manipulating nutritional conditions and salinity-gradient stress for enhanced lutein production in marine microalga Chlamydomonas sp.[J]. Biotechnology Journal,2019,14(4): 1 800 380.
[13] 谢友坪,赵旭蕊,阳需求,等. 脉冲式添加氮源对耐温微藻Desmodesmus sp. F51细胞生长和细胞组成的影响[J]. 食品科学,2017,38(14): 64-70.
[14] 李君兰,杨澜,吴潇霞,等. 葡萄糖酸钙采前处理对鲜枣果实低温贮藏品质及活性氧代谢的影响[J]. 食品与发酵工业,2019,45(7): 144-150.
[15] CHEN C Y,JESISCA,HSIEH C,et al.Production,extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1[J]. Bioresource Technology,2016,200: 500-505.
[16] TAYLOR K L,BRACKENRIDGE A E,VIVIER M A,et al.High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue[J]. Journal of Chromatography A,2006,1121(1): 83-91.
[17] SUI Y X,MUYS M,VAN DE WAAL D B,et al. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity[J]. Bioresource Technology,2019,287: 121 398.
[18] WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition introduction[C].World Health Organization Technical Report,2007.
[19] 王宝贝,李丽婷,刘磊,等. 烘焙处理对小球藻营养成分及其抗氧化活性的影响[J]. 食品与发酵工业,2019,45(4): 147-151.
[20] ALYABYEV A J,LOSEVA N L,GORDON L K,et al.The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells[J]. Thermochimica Acta,2007,458(1-2): 65-70.
[21] EL-SHEEKH M,ABOMOHRA A E F,HANELT D. Optimization of biomass and fatty acid productivity of Scenedesmus obliquusas a promising microalga for biodiesel production[J]. World Journal of Microbiology and Biotechnology,2013,29(5): 915-922.
[22] ZHANG L,PEI H,CHEN S,et al.Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae[J]. Bioresource Technology,2018,250: 449-456.
[23] KHONA D K,SHIROLIKAR S M,GAWDE K K,et al.Characterization of salt stress-induced palmelloids in the green alga Chlamydomonas reinhardtii[J]. Algal Research,2016,16: 434-448.
[24] SHAH M M,LIANG Y,CHENG J J,et al.Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products[J]. Frontiers in Plant Science,2016,7: 531.
[25] SUBRAMANYAM R,JOLLEY C,THANGARAJ B,et al.Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions[J]. Planta,2010,231(4): 913-922.
[26] KENT M,WELLADSEN H M,MANGOTT A,et al.Nutritional evaluation of Australian microalgae as potential human health supplements[J]. PloS One,2015,10(2): e0118985.
[27] ZHILA N O,KALACHEVA G S,VOLOVA T G.Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252[J]. Journal of Applied Phycology,2011,23(1): 47-52.
[28] XU X Q,BEARDALL J.Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake[J]. Phytochemistry,1997,45(4): 655-658.
[29] VAZQUEZ-DUHALT R,ARREDONDO-VEGA B O. Haloadaptation of the green alga Botryococcus braunii[J]. Phytochemistry,1991,30(9): 2 919-2 925.
[30] ISHIKA T,BAHRI P A,LAIRD D W,et al.The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine,halotolerant,and halophilic microalgae[J]. Journal of Applied Phycology,2018,30(3): 1 453-1 464.
[31] ISHIKA T,MOHEIMANI N R,BAHRI P A,et al.Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity[J]. Algal Research,2017,28: 66-73.
[32] HO S H,CHAN M C,LIU C C,et al.Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies[J]. Bioresource Technology,2014,152: 275-282.