以1株L-组氨酸生产菌Escherichia coli HIS1为研究对象,优化其L-组氨酸合成关键酶HisG*的诱导条件。通过摇瓶发酵的方式确定诱导剂木糖的最适质量浓度为10 g/L;通过5 L发酵罐发酵的方式确定最佳诱导时间为发酵8 h时诱导;因发酵过程中木糖会被消耗,故通过多次添加木糖或敲除xylA基因阻断木糖代谢途径保持发酵液中的木糖浓度,以稳定诱导条件。结果表明,木糖同时作为诱导剂和碳源更有利于L-组氨酸的发酵生产,为此摸索出了木糖和葡萄糖共发酵生产L-组氨酸的发酵工艺。该工艺主要控制要点为发酵8 h之后添加质量浓度为10 g/L的木糖,发酵过程中流加木糖和葡萄糖质量比为1∶5的糖溶液。最终L-组氨酸的产量可达56.5 g/L,是纯葡萄糖发酵时的2倍。
Taking an L-histidine-producing strain Escherichia coli HIS1 as research object, the induction conditions of key enzyme HisG* for L-histidine synthesis were optimized. The optimal concentration of xylose was determined to be 10 g/L by shake flask fermentation and the optimal induction time was determined to be 8 h in a 5 L fermenter. Since xylose was gradually consumed during the fermentation, adding xylose multiple times or knocking out xylA gene to block xylose metabolism pathway was carried out to maintain xylose concentration and stabilize the induction conditions. The results showed that xylose was more conducive to L-histidine fermentation as both inducer and carbon source. To this end, process for L-histidine production by co-fermentation of xylose and glucose was proposed. The main control point of this process was to add 10 g/L xylose after fermentation for 8 h and a mixed solution was supplemented during the fermentation, of which the mass ratio of xylose and glucose was 1∶5. The final L-histidine production was 56.5 g/L, as twice as that of pure glucose fermentation.
[1] FENG R,NIU Y,SUN X,et al.Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome:A randomised controlled trial[J].Diabetologia,2013,56(5):985-994.
[2] HASEGAWA S,ICHIYAMA T,SONAKA I,et al.Cysteine,histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells[J].Clinical & Experimental Immunology,2012,167(2):269-274.
[3] OMAHONY L,AKDIS M,AKDIS C A.Regulation of the immune response and inflammation by histamine and histamine receptors[J].Journal of Allergy and Clinical Immunology,2011,128(6):1 153-1 162.
[4] TUTTLE K R,MILTON J E,PACKARD D P,et al.Dietary amino acids and blood pressure:A cohort study of patients with cardiovascular disease[J].American journal of kidney diseases,2012,59(6):803-809.
[5] HAUG A,DBOTTEN R R, MYDLAND L T,et al.Increased broiler muscle carnosine and anserine following histidine supplementation of commercial broiler feed concentrate[J].Acta Agriculturae Scandinavica Section A-Animal Science,2008,58(2):71-77.
[6] BERVEN L,ATKINS L,CASTLES D,et al.Origin of the recommended intake of L-histidine by infants[J].European Journal of Nutrition & Food Safety,2014,4(4):404-407.
[7] IKEDA M. Amino Acid Production [M].Berlin:Springer,2003:1-35.
[8] 蔡萌萌,刘子强,户红通,等.α-酮戊二酸对L-羟脯氨酸产量的影响[J].中国酿造,2018,37(7):47-50.
[9] SCHWENTNER A,FEITH A,MÜNCH E,et al.Modular systems metabolic engineering enables balancing of relevant pathways for histidine production with Corynebacterium glutamicum[J].Biotechnol Biofuels,2019,12(1):65.
[10] DOROSHENKO V G,LOBANOV A O,FEDORINA E A.The directed modification of Escherichia coli MG1655 to obtain histidine-producing mutants[J].Appl Biochem Micro,2013,49(2):130-135.
[11] MALYKH E A,BUTOV I A,RAVCHEEVA A B,et al.Specific features of L-histidine production by Escherichia coli concerned with feedback control of AICAR formation and inorganic phosphate/metal transport[J].Microb Cell Fact,2018,17(1):42.
[12] CHENG Y,ZHOU Y,YANG L,et al.Modification of histidine biosynthesis pathway genes and the impact on production of histidine in Corynebacterium glutamicum[J].Biotechnol Lett,2013,35(5):735-741.
[13] 温廷益,商秀玲,张芸,等.生产L-组氨酸的方法及其专用重组菌:中国,201410050868.2[P].2014-02-14.
[14] LI Y,LIN Z,HUANG C,et al.Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing[J].Metab Eng,2015,31:13-21.
[15] KULIS-HORN R K,PERSICKE M,KALINOWSKI J.Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for histidine production-Strategies for the elimination of feedback inhibition[J].J Biotechnol,2015,206:26-37.
[16] SCHENDZIELORZ G,DIPPONG M,GRÜNBERGER A,et al.Taking control over control:Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways[J].ACS Synth Biol,2014,3(1):21-29.
[17] ZHANG Y,SHANG X,DENG A,et al.Genetic and biochemical characterization of Corynebacterium glutamicum ATP phosphoribosyltransferase and its three mutants resistant to feedback inhibition by histidine[J].Biochimie,2012,94(3):829-838.
[18] WINKLER M E,RAMOS-MONTAÑEZ S.Biosynthesis of histidine[J].EcoSal Plus,2009,3(2):1 128.
[19] NAKASHIMA M,AKITA H,HOSHINO T.Establishment of a novel gene expression method,BICES (biomass-inducible chromosome-based expression system),and its application to the production of 2,3-butanediol and acetoin[J].Metabolic Engineering,2014,25:204-214.
[20] 王东阳,蔡传康,闫汝东,等. L-组氨酸发酵条件优化[J].中国酿造,2010,29(12):16-18.
[21] 郭磊,吴鹤云,张成林, 等.利用响应面法优化枯草芽孢杆菌产尿苷发酵培养基[J].食品与发酵工业,2015,41(6):94-99.
[22] 蔡萌萌,户红通,刘子强,等.活细胞在线监控L-羟脯氨酸补料发酵工艺的研究[J].食品与发酵工业, 2018,44(5):10-15.
[23] 李益烽,方芳.鲁氏接合酵母产葡萄糖醛酸发酵条件优化[J].食品与发酵工业,2019,45(10):42-47.
[24] 李强,韩亚昆,蒋帅,等.代谢工程改造大肠杆菌合成反式-4-羟基-L-脯氨酸[J].食品科学,2020,41(2):202-207.
[25] 李燕军,赵岩,黄龙辉,等.微生物同步利用葡萄糖和木糖代谢工程概述[J].发酵科技通讯,2017,46(1):54-59.