[1] COPELAND L, BLAZEK J, SALMAN H, et al. Form and functionality of starch[J]. Food Hydrocolloids, 2009, 23(6): 1 527-1 534.
[2] SALERMÓN J, MANSON J E, STAMPFER M J, et al. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women[J]. The Journal of the American Medical Association, 1997, 277(6): 472-477.
[3] ZHANG G, HAMAKER B R. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(10): 852-867.
[4] GO R M, MARK A E, MALDE A K, et al. Binding of starch fragments to the starch branching enzyme: Implications for developing slower-digesting starch[J]. Biomacromolecules, 2015, 16(8):2 475-2 481.
[5] TETLOW I J, EMES M J. A review of starch-branching enzymes and their role in amylopectin biosynthesis[J]. International Union of Biochemistry and Molecular Biology Life, 2014, 66(8): 546-558.
[6] ABAD M C, BINDERUP K, RIOS-STEINER J, et al. The X-ray crystallographic structure of Escherichia coli branching enzyme[J]. Journal of Biological Chemistry, 2002, 277(44):42 164-42 170.
[7] DIJKHUIZEN L, KRALJ S, VAN DER MAAREL M J E C, et al. The unique branching patterns of deinococcus glycogen branching enzymes are determined by their N-terminal domains[J]. Applied and Environmental Microbiology, 2009, 75(5): 1 355-1 362.
[8] PALOMO M, PIJNING T, BOOIMAN T, et al. Thermus thermophilus glycoside hydrolase family 57 branching enzyme: Crystal structure, mechanism of action and products formed[J]. Journal of Biological Chemistry, 2011, 286(5): 3 520-3 530.
[9] 李才明, 李阳, 顾正彪, 等. 麦芽糊精的支化修饰及其特性研究进展[J]. 中国食品学报, 2018, 18(10): 1-8.
[10] TAKATA H,OHDAN K,TAKAHA T,et al. Properties of branching enzyme from hyperthermophilic bacterium, Aquifex aeolicus, and its potential for production of highly-branched cyclic dextrin[J]. Journal of Applied Glycoscience, 2003, 50(1): 15-20.
[11] CHOI S S, DANIELEWSKA NIKIEL B, KOJIMA I, et al. Safety evaluation of 1,4-α-glucan branching enzymes from Bacillus stearothermophilus and Aquifex aeolicus expressed in Bacillus subtilis[J]. Food Chem Toxicol, 2009, 47(8): 2 044-2 051.
[12] FAN Qin,XIE Zhengjun,ZHAN Jinling, et al. A glycogen branching enzyme from Thermomonospora curvata: Characterization and its action on Maize starch[J]. Starch - Stārke, 2016, 68(3-4): 355-364.
[13] JOBLING S. Improving starch for food and industrial applications[J]. Current Opinion in Plant Biology, 2003, 7(2):210-218.
[14] 马尔克·乔斯·埃利塞·科尔内利斯·凡德马雷拉, 多伊德·哈科博·宾纳玛, 辛迪·塞梅因, 等. 新型可缓慢消化的贮存碳水化合物: 荷兰, CN101631474[P]. 2010-01-20.
[15] PARIZA M W, JOHNSON E A. Evaluating the safety of microbial enzyme preparations used in food processing: Update for a new century[J]. Regulatory Toxicology & Pharmacology, 2001, 33(2): 173-186.
[16] RYOYAMA K, KIDACHI Y, YAMAGUCHI H, et al. Anti-tumor activity of an enzymatically synthesized α-1,6 branched α-1,4-glucan, glycogen[J]. Journal of the Agricultural Chemical Society of Japan, 2004, 68(11): 2 332-2 340.
[17] BAN Xiaofeng, LI Caiming, GU Zhengbiao, et al. Expression and biochemical characterization of a thermostable branching enzyme from Geobacillus thermoglucosidans[J]. Journal of Molecular Microbiology and Biotechnology, 2016,26(5): 303-311.
[18] MOHTAR N S, RAHMAN M B A, RAHMAN R N Z R A, et al. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05[J].Peerj,2016, 4(12): e2 714.
[19] KAUR J, KUMAR A, KAUR J. Strategies for optimization of heterologous protein expression in E. coli : Roadblocks and reinforcements[J]. International Journal of Biological Macromolecules, 2018, 106: 803-822.
[20] 鲍春辉, 顾正彪, 李才明, 等. 重组大肠杆菌产淀粉分支酶的发酵条件探索[J]. 食品工业科技, 2014, 35(15): 155-158,162.
[21] 范琴, 谢正军, 金征宇, 等. Thermomonospora curvata淀粉分支酶的过量表达及其催化反应机理研究[J]. 现代食品科技, 2016, 32(6): 70-76.
[22] LI Lingling, SU Lingqia, HU Fan, et al. Recombinant expression and characterization of the glycogen branching enzyme from Vibrio vulnificus and its application in starch modification[J]. International Journal of Biological Macromolecules, 2019,155: 987-994.
[23] VICTOR M P, ACHARYA D, BEGUM T, et al. The optimization of mRNA expression level by its intrinsic properties—Insights from codon usage pattern and structural stability of mRNA[J]. Genomics, 2019, 111(6),1 292-1 297.
[24] LIU Hua, LI Jianghua, DU Guocheng, et al. Enhanced production of α-cyclodextrin glycosyltransferase in Escherichia coli by systematic codon usage optimization[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(12):1 841-1 849.
[25] 张晓元, 郝荣华, 刘飞, 等. 密码子优化提高海藻糖合成酶基因在大肠杆菌中的表达水平[J]. 食品与药品, 2019, 21(1): 1-6.
[26] TOLIA N H, JOSHUA TOR L. Strategies for protein coexpression in Escherichia coli[J]. Nature Methods, 2006, 3(1): 55-64.
[27] 刘艺婷.淀粉分支酶在大肠杆菌中的分泌表达及其分子改造研究[D].无锡:江南大学, 2017.
[28] KO Y T, CHUNG P S, SHIH Y C, et al. Cloning, characterization, and expression of mungbean (Vigna radiata L.) starch branching enzyme Ⅱ cDNA in Escherichia coli[J]. Journal of Agricultural & Food Chemistry, 2009, 57(3): 871-879.
[29] DER MAAREL M J, VOS A, SANDERS P, et al. Properties of the glucan branching enzyme of the hyperthermophilic bacterium Aquifex aeolicus[J]. Biocatalysis and Biotransformation, 2010, 21(4-5):199-207.
[30] 李阳, 李兆丰, 任俊彦, 等. 一种提高淀粉分支酶在大肠杆菌中胞外分泌表达的方法:中国,CN107119026A[P]. 2017-09-01.
[31] 成成, 李兆丰, 李彬, 等. 利用重组大肠杆菌生产α-环糊精葡萄糖基转移酶[J]. 生物加工过程, 2009, 7(3): 56-63.
[32] 邹纯.重组Bacillus deramificans普鲁兰酶的高效胞外表达及其应用[D].无锡:江南大学, 2016.
[33] 余小霞, 田健, 刘晓青, 等. 枯草芽孢杆菌表达系统及其启动子研究进展[J]. 生物技术通报, 2015, 31(2): 35-44.
[34] 吴志伟, 徐立新, 佟金, 等. 多拷贝策略在增强目的基因表达中的应用[J]. 生命科学研究, 2016, 20(2): 166-170.
[35] öZTÜRK S, ERGÜN B G, ÇALıK P. Double promoter expression systems for recombinant protein production by industrial microorganisms[J]. Applied Microbiology and Biotechnology, 2017, 101(20): 7 459-7 475.
[36] ZHANG Kang, SU Lingqia, DUAN Xuguo, et al. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system[J]. Microbial Cell Factories, 2017, 16(1): 32.
[37] KANG H K, JANG J H, SHIM J H, et al. Efficient constitutive expression of thermostable 4-α-glucanotransferase in Bacillus subtilis using dual promoters[J]. World Journal of Microbiology and Biotechnology, 2010, 26(10):1 915-1 918.
[38] SONG Wan, NIE Yao, MU Xiaoqing, et al. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis : Effects of promoter and host[J]. Protein Expression and Purification, 2016, 124: 23-31.
[39] 李兆丰, 顾正彪, 刘艺婷, 等. 一种提高淀粉分支酶活力的方法:中国, CN106190998A[P]. 2016-08-25.
[40] LIU Yiting, LI Caiming, GU Zhengbiao, et al. Alanine 310 is important for the activity of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidans STB02[J]. International Journal of Biological Macromolecules, 2017, 97: 156-163.
[41] 袁林, 曾静, 郭建军, 等. 极端嗜热酸性α-淀粉酶PFA在枯草芽孢杆菌中的高效分泌表达[J]. 食品科学, 2018, 39(18): 100-108.
[42] SONG Y F, NIKOLOFF J M, ZHANG D W. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis[J]. Journal of Microbiology & Biotechnology, 2015, 25(7): 963-977.
[43] TSIRIGOTAKI A, DE GEYTER J, SOSTARIC N, et al. Protein export through the bacterial Sec pathway[J]. Nature Reviews Microbiology, 2017, 15(1): 21-36.
[44] PALMER T, BERKS B C. The twin-arginine translocation (Tat) protein export pathway[J]. Nature Reviews Microbiology,2012, 10(7): 483-496.
[45] FREUDL R. Signal peptides for recombinant protein secretion in bacterial expression systems[J]. Microbial Cell Factories, 2018, 17(1): 52.
[46] YAO Dongbang, SU Lingqia, LI Na, et al. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection[J]. Microbial Cell Factories, 2019, 18(1): 69.
[47] WATANABE K, TSUCHIDA Y, OKIBE N, et al. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences[J]. Microbiology, 2009, 155(3): 741-750.
[48] 杨韵霏, 李由然, 张梁, 等. 细菌麦芽糖淀粉酶在枯草芽孢杆菌中的诱导型异源表达[J]. 微生物学通报, 2017, 44(2): 263-273.
[49] 王驰, 李柱, 李才明, 等. 两阶段温度控制策略以及助剂促进淀粉分支酶的胞外表达[J]. 食品与发酵工业, 2016, 42(8): 19-24.
[50] ZHANG Yu, NIE Yao, ZHOU Xia, et al. Enhancement of pullulanase production from recombinant Bacillus subtilis by optimization of feeding strategy and fermentation conditions[J]. AMB Express, 2020, 10(1):11.