综述与专题评论

微生物来源淀粉分支酶异源高效表达策略的研究进展

  • 管媛媛 ,
  • 杨婷 ,
  • 葛雨嘉 ,
  • 黄静
展开
  • 华东师范大学 生命科学学院,上海,200241
本科生(黄静教授为通讯作者,E-mail:jhuang@bio.ecnu.edu.cn)

收稿日期: 2020-03-12

  修回日期: 2020-04-14

  网络出版日期: 2020-09-17

基金资助

大学生创新创业训练计划项目(2019PY-367)

Recent advances in high-efficiency heterologous expression strategies of microbial-derived starch branching enzyme

  • GUAN Yuanyuan ,
  • YANG Ting ,
  • GE Yujia ,
  • HUANG Jing
Expand
  • School of Life Sciences,East China Normal University,Shanghai 200241,China

Received date: 2020-03-12

  Revised date: 2020-04-14

  Online published: 2020-09-17

摘要

淀粉分支酶(starch-branching enzyme, SBE,EC 2.4.1.18)是一种参与淀粉生物合成的糖基转移酶,能切断淀粉分子中的α-1,4-糖苷键,由此形成的非还原性低聚糖通过α-1,6-糖苷键连接至受体链上,形成α-1,6分支位点,经过“切割-转移-连接”多次反应获得一种新型生物改性淀粉——高支化淀粉。微生物来源的SBE具有产量高、稳定性好、易于异源表达等优势,是生产大量SBE的研究热点。在众多酶表达宿主中,大肠杆菌和枯草芽孢杆菌是SBE异源表达的最常见宿主菌。该文着重阐述了近年来有关实现微生物来源的SBE在以上2种宿主内异源高效表达策略的研究进展,为深入探究SBE作用机理及改性淀粉的工业化应用提供了重要参考。

本文引用格式

管媛媛 , 杨婷 , 葛雨嘉 , 黄静 . 微生物来源淀粉分支酶异源高效表达策略的研究进展[J]. 食品与发酵工业, 2020 , 46(16) : 276 -282 . DOI: 10.13995/j.cnki.11-1802/ts.023939

Abstract

Starch-branching enzyme (SBE, EC 2.4.1.18) is a glycosyltransferase involved in starch biosynthesis. It can cut the α-1,4-glycosidic bond in starch molecules and form non-reducing oligosaccharide connecting to the receptor chain through α-1,6-glycosidic bond to form α-1,6 branching sites. Through these “cutting-transfer-linking” processes, a new type of biologically modified starch named highly branched starch can be obtained. Microbial-derived starch branching enzymes have the advantages of high yield and better stability as well. It can be easily expressed in heterologous hosts. As a consequence, mass production of SBE has become a research hotspot in recent years. Among many hosts for enzyme expression, Escherichia coli and Bacillus subtilis are the most common host strains for heterologous expression of SBE. This paper focused on recent advances in strategies for high-efficiency heterologous expression of microbial-derived SBEs in these two hosts, providing important references for further investigation of the mechanism of SBE function and the industrialized application of modified starch.

参考文献

[1] COPELAND L, BLAZEK J, SALMAN H, et al. Form and functionality of starch[J]. Food Hydrocolloids, 2009, 23(6): 1 527-1 534.
[2] SALERMÓN J, MANSON J E, STAMPFER M J, et al. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women[J]. The Journal of the American Medical Association, 1997, 277(6): 472-477.
[3] ZHANG G, HAMAKER B R. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(10): 852-867.
[4] GO R M, MARK A E, MALDE A K, et al. Binding of starch fragments to the starch branching enzyme: Implications for developing slower-digesting starch[J]. Biomacromolecules, 2015, 16(8):2 475-2 481.
[5] TETLOW I J, EMES M J. A review of starch-branching enzymes and their role in amylopectin biosynthesis[J]. International Union of Biochemistry and Molecular Biology Life, 2014, 66(8): 546-558.
[6] ABAD M C, BINDERUP K, RIOS-STEINER J, et al. The X-ray crystallographic structure of Escherichia coli branching enzyme[J]. Journal of Biological Chemistry, 2002, 277(44):42 164-42 170.
[7] DIJKHUIZEN L, KRALJ S, VAN DER MAAREL M J E C, et al. The unique branching patterns of deinococcus glycogen branching enzymes are determined by their N-terminal domains[J]. Applied and Environmental Microbiology, 2009, 75(5): 1 355-1 362.
[8] PALOMO M, PIJNING T, BOOIMAN T, et al. Thermus thermophilus glycoside hydrolase family 57 branching enzyme: Crystal structure, mechanism of action and products formed[J]. Journal of Biological Chemistry, 2011, 286(5): 3 520-3 530.
[9] 李才明, 李阳, 顾正彪, 等. 麦芽糊精的支化修饰及其特性研究进展[J]. 中国食品学报, 2018, 18(10): 1-8.
[10] TAKATA H,OHDAN K,TAKAHA T,et al. Properties of branching enzyme from hyperthermophilic bacterium, Aquifex aeolicus, and its potential for production of highly-branched cyclic dextrin[J]. Journal of Applied Glycoscience, 2003, 50(1): 15-20.
[11] CHOI S S, DANIELEWSKA NIKIEL B, KOJIMA I, et al. Safety evaluation of 1,4-α-glucan branching enzymes from Bacillus stearothermophilus and Aquifex aeolicus expressed in Bacillus subtilis[J]. Food Chem Toxicol, 2009, 47(8): 2 044-2 051.
[12] FAN Qin,XIE Zhengjun,ZHAN Jinling, et al. A glycogen branching enzyme from Thermomonospora curvata: Characterization and its action on Maize starch[J]. Starch - Stārke, 2016, 68(3-4): 355-364.
[13] JOBLING S. Improving starch for food and industrial applications[J]. Current Opinion in Plant Biology, 2003, 7(2):210-218.
[14] 马尔克·乔斯·埃利塞·科尔内利斯·凡德马雷拉, 多伊德·哈科博·宾纳玛, 辛迪·塞梅因, 等. 新型可缓慢消化的贮存碳水化合物: 荷兰, CN101631474[P]. 2010-01-20.
[15] PARIZA M W, JOHNSON E A. Evaluating the safety of microbial enzyme preparations used in food processing: Update for a new century[J]. Regulatory Toxicology & Pharmacology, 2001, 33(2): 173-186.
[16] RYOYAMA K, KIDACHI Y, YAMAGUCHI H, et al. Anti-tumor activity of an enzymatically synthesized α-1,6 branched α-1,4-glucan, glycogen[J]. Journal of the Agricultural Chemical Society of Japan, 2004, 68(11): 2 332-2 340.
[17] BAN Xiaofeng, LI Caiming, GU Zhengbiao, et al. Expression and biochemical characterization of a thermostable branching enzyme from Geobacillus thermoglucosidans[J]. Journal of Molecular Microbiology and Biotechnology, 2016,26(5): 303-311.
[18] MOHTAR N S, RAHMAN M B A, RAHMAN R N Z R A, et al. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05[J].Peerj,2016, 4(12): e2 714.
[19] KAUR J, KUMAR A, KAUR J. Strategies for optimization of heterologous protein expression in E. coli : Roadblocks and reinforcements[J]. International Journal of Biological Macromolecules, 2018, 106: 803-822.
[20] 鲍春辉, 顾正彪, 李才明, 等. 重组大肠杆菌产淀粉分支酶的发酵条件探索[J]. 食品工业科技, 2014, 35(15): 155-158,162.
[21] 范琴, 谢正军, 金征宇, 等. Thermomonospora curvata淀粉分支酶的过量表达及其催化反应机理研究[J]. 现代食品科技, 2016, 32(6): 70-76.
[22] LI Lingling, SU Lingqia, HU Fan, et al. Recombinant expression and characterization of the glycogen branching enzyme from Vibrio vulnificus and its application in starch modification[J]. International Journal of Biological Macromolecules, 2019,155: 987-994.
[23] VICTOR M P, ACHARYA D, BEGUM T, et al. The optimization of mRNA expression level by its intrinsic properties—Insights from codon usage pattern and structural stability of mRNA[J]. Genomics, 2019, 111(6),1 292-1 297.
[24] LIU Hua, LI Jianghua, DU Guocheng, et al. Enhanced production of α-cyclodextrin glycosyltransferase in Escherichia coli by systematic codon usage optimization[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(12):1 841-1 849.
[25] 张晓元, 郝荣华, 刘飞, 等. 密码子优化提高海藻糖合成酶基因在大肠杆菌中的表达水平[J]. 食品与药品, 2019, 21(1): 1-6.
[26] TOLIA N H, JOSHUA TOR L. Strategies for protein coexpression in Escherichia coli[J]. Nature Methods, 2006, 3(1): 55-64.
[27] 刘艺婷.淀粉分支酶在大肠杆菌中的分泌表达及其分子改造研究[D].无锡:江南大学, 2017.
[28] KO Y T, CHUNG P S, SHIH Y C, et al. Cloning, characterization, and expression of mungbean (Vigna radiata L.) starch branching enzyme Ⅱ cDNA in Escherichia coli[J]. Journal of Agricultural & Food Chemistry, 2009, 57(3): 871-879.
[29] DER MAAREL M J, VOS A, SANDERS P, et al. Properties of the glucan branching enzyme of the hyperthermophilic bacterium Aquifex aeolicus[J]. Biocatalysis and Biotransformation, 2010, 21(4-5):199-207.
[30] 李阳, 李兆丰, 任俊彦, 等. 一种提高淀粉分支酶在大肠杆菌中胞外分泌表达的方法:中国,CN107119026A[P]. 2017-09-01.
[31] 成成, 李兆丰, 李彬, 等. 利用重组大肠杆菌生产α-环糊精葡萄糖基转移酶[J]. 生物加工过程, 2009, 7(3): 56-63.
[32] 邹纯.重组Bacillus deramificans普鲁兰酶的高效胞外表达及其应用[D].无锡:江南大学, 2016.
[33] 余小霞, 田健, 刘晓青, 等. 枯草芽孢杆菌表达系统及其启动子研究进展[J]. 生物技术通报, 2015, 31(2): 35-44.
[34] 吴志伟, 徐立新, 佟金, 等. 多拷贝策略在增强目的基因表达中的应用[J]. 生命科学研究, 2016, 20(2): 166-170.
[35] öZTÜRK S, ERGÜN B G, ÇALıK P. Double promoter expression systems for recombinant protein production by industrial microorganisms[J]. Applied Microbiology and Biotechnology, 2017, 101(20): 7 459-7 475.
[36] ZHANG Kang, SU Lingqia, DUAN Xuguo, et al. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system[J]. Microbial Cell Factories, 2017, 16(1): 32.
[37] KANG H K, JANG J H, SHIM J H, et al. Efficient constitutive expression of thermostable 4-α-glucanotransferase in Bacillus subtilis using dual promoters[J]. World Journal of Microbiology and Biotechnology, 2010, 26(10):1 915-1 918.
[38] SONG Wan, NIE Yao, MU Xiaoqing, et al. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis : Effects of promoter and host[J]. Protein Expression and Purification, 2016, 124: 23-31.
[39] 李兆丰, 顾正彪, 刘艺婷, 等. 一种提高淀粉分支酶活力的方法:中国, CN106190998A[P]. 2016-08-25.
[40] LIU Yiting, LI Caiming, GU Zhengbiao, et al. Alanine 310 is important for the activity of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidans STB02[J]. International Journal of Biological Macromolecules, 2017, 97: 156-163.
[41] 袁林, 曾静, 郭建军, 等. 极端嗜热酸性α-淀粉酶PFA在枯草芽孢杆菌中的高效分泌表达[J]. 食品科学, 2018, 39(18): 100-108.
[42] SONG Y F, NIKOLOFF J M, ZHANG D W. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis[J]. Journal of Microbiology & Biotechnology, 2015, 25(7): 963-977.
[43] TSIRIGOTAKI A, DE GEYTER J, SOSTARIC N, et al. Protein export through the bacterial Sec pathway[J]. Nature Reviews Microbiology, 2017, 15(1): 21-36.
[44] PALMER T, BERKS B C. The twin-arginine translocation (Tat) protein export pathway[J]. Nature Reviews Microbiology,2012, 10(7): 483-496.
[45] FREUDL R. Signal peptides for recombinant protein secretion in bacterial expression systems[J]. Microbial Cell Factories, 2018, 17(1): 52.
[46] YAO Dongbang, SU Lingqia, LI Na, et al. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection[J]. Microbial Cell Factories, 2019, 18(1): 69.
[47] WATANABE K, TSUCHIDA Y, OKIBE N, et al. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences[J]. Microbiology, 2009, 155(3): 741-750.
[48] 杨韵霏, 李由然, 张梁, 等. 细菌麦芽糖淀粉酶在枯草芽孢杆菌中的诱导型异源表达[J]. 微生物学通报, 2017, 44(2): 263-273.
[49] 王驰, 李柱, 李才明, 等. 两阶段温度控制策略以及助剂促进淀粉分支酶的胞外表达[J]. 食品与发酵工业, 2016, 42(8): 19-24.
[50] ZHANG Yu, NIE Yao, ZHOU Xia, et al. Enhancement of pullulanase production from recombinant Bacillus subtilis by optimization of feeding strategy and fermentation conditions[J]. AMB Express, 2020, 10(1):11.
文章导航

/