分析与检测

基于高光谱成像技术的大曲酸度值预测及其可视化

  • 孙婷 ,
  • 胡新军 ,
  • 田建平 ,
  • 王开铸 ,
  • 黄丹 ,
  • 彭兴辉
展开
  • 1(四川轻化工大学 机械工程学院,四川 宜宾,644000)
    2(四川轻化工大学 生物工程学院,四川 宜宾,644000)
硕士研究生(胡新军讲师为通讯作者,E-mail:xjhu@suse.edu.cn)

收稿日期: 2020-03-27

  修回日期: 2020-04-27

  网络出版日期: 2020-10-14

基金资助

四川省科技厅重点研发项目(2019YJ0475);四川轻化工大学研究生创新基金项目(y2019003);自贡市重点科技计划项目(2018CXJD06)

Prediction and visualization of Daqu acidity based on hyperspectral imaging technology

  • SUN Ting ,
  • HU Xinjun ,
  • TIAN Jianping ,
  • WANG Kaizhu ,
  • HUANG Dan ,
  • PENG Xinghui
Expand
  • 1(College of Mechanical Engineering,Sichuan University of Science & Engineering,Yibin 644000,China)
    2(College of Biotechnology Engineering,Sichuan University of Science & Engineering,Yibin 644000 China)

Received date: 2020-03-27

  Revised date: 2020-04-27

  Online published: 2020-10-14

摘要

酸度值是大曲质量评价的重要指标,提出了一种基于高光谱成像技术快速检测大曲发酵过程中酸度值的方法。通过采集大曲高光谱图像并提取感兴趣区域(region of interest,ROI)的平均光谱,采用多元散射校正(multiplicative scatter correction,MSC)、标准正态变量校正(standard normal variable correction,SNV)和S-G卷积平滑后一阶导(savitzky-golay smoothing first derivative,SGFD)3种预处理方法,再通过连续投影算法(successive projection algorithm,SPA)选取最优的特征波长,分别建立偏最小二乘回归(partial least squares regression,PLSR)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)预测模型,结果显示,基于SPA从SNV预处理光谱中筛选的8个最优特征波长建立的LS-SVM模型预测大曲酸度值效果最好,其中预测集决定系数(determination coefficient of prediction,R2P)为0.913 2,预测集均方根误差(root mean square error of prediction,RMSEP)为0.008 1。通过将ROI反射率输入最优的SNV+SPA+LS-SVM预测模型中,生成了大曲酸度值可视化云图,实现了不同发酵时期的酸度值及其分布的直观显示。结果表明,利用高光谱成像技术可实现大曲酸度值快速检测和可视化分布。

本文引用格式

孙婷 , 胡新军 , 田建平 , 王开铸 , 黄丹 , 彭兴辉 . 基于高光谱成像技术的大曲酸度值预测及其可视化[J]. 食品与发酵工业, 2020 , 46(17) : 226 -231 . DOI: 10.13995/j.cnki.11-1802/ts.024080

Abstract

Acidity value is an important index for quality evaluation of Daqu, a method based on hyperspectral imaging technology for rapid detection of the acidity value during the fermentation of Daqu was proposed. Hyperspectral images of Daqu samples and average spectrum of regions of interest (ROIs) were collected, original spectrum was pretreated by three methods including multivariate scattering correction (MSC), standard normal variable correction (SNV) and Savitzky-Golay first-order derivative (SGFD). Optimal characteristic wavelengths were selected by successive projection algorithm (SPA), then partial least squares regression (PLSR) and least squares support vector machine (LS-SVM) models were established. The results showed that the LS-SVM model built with 8 wavelengths performed better in prediction set, with determination coefficient of prediction (R2P) is 0.913 2 and root mean square error of prediction (RMSEP) is 0.008 1. By inputting the spectrum of each pixel into the optimal SNV+ SPA + LS-SVM model, the visualization of the distribution map of acidity value in Daqu was obtained, the visualization of the acidity value and its distribution in different fermentation periods was realized.

参考文献

[1] 唐玲,陶雪容.基于粗集理论的大曲理化指标重要性分析[J].黑龙江科技信息,2011(17):36-37.
[2] 荣瑞金,李祖明,王德良,等.中国酒曲微生物研究进展[J].中国酿造,2009(6):5-8.
[3] 李超,穆琳,王建耀,等.汾型大曲的理化指标和微生物指标分析[J].中国酿造,2009,28(1):140-142.
[4] 徐占成,王加辉.代谢指纹技术在曲药分析中的应用[J].酿酒科技,2002(6):17-19.
[5] 王军凯,王卫东,蒋明,等.近红外光谱技术结合偏最小二乘法检测大曲糖化力[J].酿酒科技,2018(3):116-118.
[6] 曹振华,沈才洪,秦辉,等.泸型大曲中曲香与微生物和生理生化指标间的关系[J].酿酒科技,2016(3):42-44;48.
[7] 陈安静,周军,许德富,等.电位滴定法测定大曲酸度的研究[J].酿酒科技,2011(8):112-113.
[8] 王霓,应全红,白德奎,等.一种鉴别酱香型白酒真伪度技术方法的研究[J].中国酿造,2014,33(2):138-140.
[9] 胡心行,沈小梅,马雷,等.快速测定大曲水份新方法的研究[J].酿酒,2017,44(5):97-102.
[10] 刘国英.近红外光谱技术在大曲糖化力分析检测方面的应用[J].酿酒,2015,42(4):76-79.
[11] 于宏威,王强,石爱民,等.高光谱成像技术结合化学计量学可视化花生中蛋白质含量分布[J].光谱学与光谱分析,2017,37(3):853-858.
[12] 吴翔,张卫正,陆江锋,等.基于高光谱技术的玉米种子可视化鉴别研究[J].光谱学与光谱分析,2016,36(2):511-514.
[13] 詹白勺,章海亮,杨建国.基于高光谱成像技术的三文鱼肉水分含量的可视化研究[J].光谱学与光谱分析,2017,37(4):1 232-1 236.
[14] 何鸿举,王魏,王洋洋,等.基于近红外高光谱技术快速检测冷鲜猪肉酸价[J].食品与发酵工业,2020,46(10):264-270.
[15] 王魏,何鸿举,王玉玲,等.基于最优光谱信息的冷鲜鸡肉TBA值快速检测[J].食品工业科技,2020,41(14):222-227.
[16] 于慧春,王润博,殷勇,等.基于不同波段的枸杞多糖及总糖高光谱成像检测[J].食品科学,2017,38(8):191-197.
[17] 赵茂程,杨君荣,陆丹丹,等.基于高光谱成像的青梅酸度检测方法[J].农业机械学报,2017,48(9):318-323.
[18] 马惠玲,王若琳,蔡骋,等.基于高光谱成像的苹果品种快速鉴别[J].农业机械学报,2017,48(4):305-312.
[19] 何鸿举,王洋洋,王魏,等.基于不同预处理高光谱信息的鸡肉滴水损失率快速预测研究[J/OL].食品工业科技:1-11[2020-07-20].http://kns.cnki.net/kcms/detail/11.1759.TS.202-00224.1400.018.html.
[20] 朱敏,孙婷,白直真,等.基于可见光/近红外高光谱技术的窖泥总酸的分布研究[J].食品与发酵工业,2020,46(8):111-117.
[21] 禹文杰,王彩霞,乔芦,等.基于高光谱成像技术的泾源黄牛肉色度PLSR预测模型构建[J].浙江农业学报,2020,32(3):527-533.
[22] 孙红,刘宁,吴莉,等.高光谱成像的马铃薯叶片含水率分布可视化[J].光谱学与光谱分析,2019,39(3):910-916.
文章导航

/