[1] DANIELLE M T,ELLVN P M,PARTICIA M G,et al.Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne diseases active surveillance network,10 US.sites,2015—2018[J].American Journal of Transplantation,2019,19(6):1 859-1 863.
[2] WEI Caijiao,ZHONG Junliang,HU Ting,et al.Simultaneous detection of Escherichia coli O157:H7,Staphylococcus aureus,and Salmonella,by multiplex PCR in milk[J].Biotech,2018,8(1):76.
[3] MINAROVICOVA J,WEGHOVA A,KACLIKOVA E.Evaluation of DNA extraction methods for culture-independent Real-Time PCR-Based detection of Listeria monocytogenes in Cheese[J].Food Analytical Methods,2020,13(3):667-677.
[4] 韩进兰,食源性疾病监测中病原微生物检验结果分析[J].临床检验杂志电子版,2020,9(1):122.
[5] JONES T F,YACKLEY J,Foodborne disease outbreaks in the United States:A historical overview[J].Foodborne Pathogens & Disease,2018,15(1):11-15.
[6] ZHAO Xihong,LI Mei,LIU Yao.Microfluidic-based approaches for foodborne pathogen detection[J].Microorganisms,2019,7(10):381.
[7] FARKAS K,MANNION F,HILLARY S,et al.Emerging technologies for the rapid detection of enteric viruses in the aquatic environment[J].Current Opinion in Environmental Science & Health,2020,16:1-6.
[8] KODOGIANNIS,VASSIILIS S.Application of an electronic nose coupled with fuzzy-wavelet network for the detection of meat spoilage[J].Food and Bioprocess Technology,2017,10(4):730-749.
[9] MUNGROO N A,OLIVEIRA G,NEETHIRAJAN S.SERS baced point-of-care detection of food-borne pathogens[J].Microchimica Acta,2015,183(2):697-707.
[10] LORENZ B,WICHMANN C,STOCKEL S,et al.Cultivation-free Raman spectroscopic investigations of bacteria[J].Trends in Microbiology,2017,25(5):413-424.
[11] ASSAF A,COEDELLA C B Y,THOUAND G.Raman spectroscopy applied to the horizontal methods ISO 6579:2002 to identify Salmonella spp. in the food industry[J].Analytical and Bioanalytical Chemistry,2014,406(20):4 899-4 910.
[12] MEISEL S,STOCKEL S,ROESCH P,et al.Identification of meat-associated pathogens via Raman microspectroscopy[J].Food Microbiology,2014,38:36-43.
[13] CIALLA D,MORZ A,RENE B,et al.Surface-enhanced Raman spectroscopy(SERS):progress and trends[J].Analytical and Bioanalytical Chemistry,2012,403(1):27-54.
[14] PAHLOW S,MARZ A,SEISE B,et al.Bioanalytical application of surface and tip enhanced Raman spectroscopy[J].Engineering in Life Science,2012,12(2):131-143.
[15] LIU Shuangshuang,LI Huanhuan,HASSAN M M,et al.Amplification of Raman spectra by gold nanorods combines with chemometrics for rapid classification of four Pseudomonas[J].International Journal of Food Microbiology,2019,304:58-67.
[16] LUO B S,LIN M I N.A portable Raman system for the identification of foodborne pathogenic bacteria[J].Journal of Rapid Method & Automation in Microbiology,2008,16(3):238-255.
[17] KOGLER M,RYABCHIKOV Y U,UUSITALO S,et al.Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification[J].Journal of Biophotonics,2018,11(7).DOI:10.1002/jbi0.201700225.
[18] SHAPAVAL V,WALCZAK B,GOGNIES S,et al.FTIR spectroscopic characterization of differently cultivated food related yeasts[J].The Analyst,2013,138(14):4 129-4 138.
[19] DAVIS R,MAUER L J.Subtyping of Listeria monocytogenes at the halptype level by Fourier transform infrared(FT-IR) spectroscopy and multivariate statistical analysis[J].International Journal of Food Microbiology,2011,150(2-3):140-149.
[20] ERNEST B,HUANG Xingyi,YI Ren,et al.Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model[J].Infrared Physics and Technology,2020,105.DOI:10.1016/j.infrared.2020.103220.
[21] TITO N B,RODEMANN T,POWELL S M.Use of near infrared spectroscopy to predict microbial numbers on Atlantic salmon[J].Food Microbiology,2012,32(2):431-436.
[22] DUAN Cui,CHEN Chunguang,KHAN M N,et al.Non-destructive determination of the total bacteria in flounder filet by portable near infrared spectrometer[J].Food Control,2014,48:18-22.
[23] HUANG Deqiu,ZHUANG Zhengfei,WANG Zhen,et al.Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria[J].Applied Surface Science,2019,497.DOI:10.1016/j.apsusc.2019.143825.
[24] DUAN Nuo,CHANG Boya,ZHANG Hui,et al.Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor[J]International Journal of Food Microbiology, 2016,218:38-43.
[25] MULLIS K B,FALOONA F A,SCHARF S J,et al.Specific enzymatic amplification of DNA in vitro:the polymerase chain reaction[J].Food Control,2014,48:18-22.
[26] FORGHANI F,WEI Shuai,OH D H.A rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of Bacillus cereus,Listeriia monocytogenes and Staphylococcus aureus in food[J].Journal of Food Protection,2016,79(5):810-815.
[27] GORDILLO R,JUAN J C,MARIA J A,et al.Development of PCR assays for detection of Escherichia coli O157:H7 in meat products[J].Meat Scinece,2011,88(4):763-773.
[28] TAYLOR T M,ELHANAFI D,DRAKE M,et al.Effect of food matrix and cell growth on PCR-based detection of Escherichia coli O157:H7 in ground beef[J].Journal of Food Protection,2005,68(2):225-232.
[29] WANG Yun,SALAZAR J K.Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices[J].Comprehensive Reviews in Food Science and Food Safety,2016,15(1):183-205.
[30] CHIANG Yucheng, TSEN Hauyang,CHEN Hsinyen,et al.Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens,Staphylococcus aureus,Streptococcus agalactiae,Enterobacter sakazakii,Escherichia coli O157:H7,Vibrio parahaemolyticus,Salmonella spp.and Pseudomonas fluoresc[J].Journal of Microbiol Methods,2012,88(1):110-116.
[31] 曲勤凤.重要食品掺假检测技术研究鱼糜制品中主料含量的测定 (荧光 PCR 法)[D].上海:复旦大学, 2011
[32] D’SOUZA C,KUMAR B K,RAI P,et al.Application of gyrB targeted SYBR green based qPCR assay for the specific and rapid detection of Vibrio vulnificus in seafood[J].Journal of Microbiological Methods, 2019.DOI:10.1016/j.mimet.2019.105747.
[33] HSU C F,TSAI T Y,PAN T M.Use of the duplex TaqMan PCR system for detection of Shiga-like toxin-producing Escherichia coli O157[J].Journal of Clinical Microbiology, 2005,43(6):2 668-2 673.
[34] WANG Lijun,YE Chenlian,XU Hengyi,et al.Development of an SD-PMA-mPCR assay with internal amplification control for rapid and sensitive detection of viable Salmonella spp.Shigella spp.and Staphylococcus aureus in food products[J].Food Control,2015,57:314-320.
[35] KIM H J,LEE H J,LEE K H,et al.Simultaneous detection of pathogenic Vibrio species using multiplex realtime PCR[J].Food Control,2012,23:491-498.
[36] MARTINON A,WILKINSON M G.Selection of optimal primer sets for use in a duplex sybr green-based,real-time polymerase chain reaction protocol for the detection of Listeria monocytogenes and Staphyloccocus aureus in foods[J].Food Saf,2011,31:297-312.
[37] JAYAN H,PU Hongbin,SUN Dawen.Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition:A review[J].Trends in Food Science & Technology, 2020:233-246.DOI:10.1016/j.tifs.2019.10.007.
[38] KHANSILI N,RATTU G,KRISHNA P M.Label-free optical biosensors for food and biological sensor applications[J].Sensors and Actuators B:Chemical,2018,265:35-49.
[39] KUSHWAHA A S,ANIL K,RAJEEV K,et al.Zinc oxide,gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of Pseudomonas like bacteria:A comparative study[J].Optik,2018:697-707.DOI:10.1016/j.ijleo.2018.07.066.
[40] SRISA-ART M,BOEHLE K E,GEISS B J,et al.Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation[J].Analytical Chemistry,2018,90(1):1 035-1 043.
[41] SHARMA H,MUTHARASAN R.Review of biosensors for foodborne pathogens and toxins[J].Sensors and Actuators B:Chemical,2013,183:535-549.
[42] MAJDINASAB M,HAYAT A,MARTY J L.Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples[J].TrAC Trends in Analytical Chemistry,2018,107:60-77.
[43] VASQUEZ G,REY A,RIVERA C,et al.Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae[J].Biosensors and Bioelectronics,2017,87:453-458.
[44] CHEN Yuhan,GUO Shuliang,ZHAO Min,et al.Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy[J].Biosensors and Bioelectronics,2018,119:215-220.
[45] LI Yong,MUSTAPHA A.Simultaneous detection of Escherichia coli O157:H7,Salmonella,and Shigella in apple cider and produce by a multiplex PCR[J].Food Prot,2004,67:27-33.
[46] KEARNS H,GOODACRE R,JAMIESON L,et al.SERS detection of multiple anti-microbial resistant pathogens using nanosensors[J].Analytical Chemistry,2017,89(23):12 666-12 673.
[47] CAREY J R,SUSLICK K S,HULKOWER K I,et al.Rapid identification of bacteria with a disposable colorimetric sensing array[J].Journal of the American Chemical Society,2011,133(19):7 571-7 576.
[48] LIN Yuehhui,CHEN Szhau,CHUANG Yaochen,et al.Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screenprinted carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7[J].Biosens Bioelectron,2008,23:1 832-1 837.
[49] PAL S,YING W,ALOCILIA E C,et al.Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices[J].Biosystems Engineering,2008,99:46.