综述与专题评论

食源性致病菌快速检测研究进展

  • 孙颖颖 ,
  • 董鹏程 ,
  • 朱立贤 ,
  • 张一敏 ,
  • 罗欣 ,
  • 毛衍伟
展开
  • 山东农业大学 食品科学与工程学院,山东 泰安,271018
硕士研究生(毛衍伟副教授为通讯作者,E-mail:maoyanwei@163.com)

收稿日期: 2020-04-13

  修回日期: 2020-05-12

  网络出版日期: 2020-10-14

基金资助

山东省重点研发计划项目(2018GGX108004);现代农业产业技术体系建设专项资金资助-肉牛项目(CARS-37);山东省现代农业产业技术体系创新团队建设专项资金项目(sdait-09-09);山东省“双一流”奖补资金项目(SYL2017XTTD12)

Research progress in rapid detection of foodborne pathogens

  • SUN Yingying ,
  • DONG Pengcheng ,
  • ZHU Lixian ,
  • ZHANG Yimin ,
  • LUO Xin ,
  • MAO Yanwei
Expand
  • College of Food Science and Engineering,Shandong Agricultural University,Taian 271018,China

Received date: 2020-04-13

  Revised date: 2020-05-12

  Online published: 2020-10-14

摘要

食源性致病菌是影响食品安全的重要因素,会引发广泛而严重的公共卫生问题。传统的平板菌落计数法是目前检测致病菌准确且通用的方法,但它耗时费力,具有明显的滞后性。因此,开发快速、准确检测食品中的致病菌和毒素的技术并提供实时结果,对保证食品安全和减轻食源性疾病具有重要意义。近年来,各种食源性致病菌的快速检测和鉴定方法相继出现和发展。该文总结了振动光谱学、聚合酶链式反应(polymerase chain reaction,PCR)和生物传感器3种最有潜力的检测方法的原理、特点和在食品产业中的应用,以期为快速检测技术的研发提供思路,并为食品产业选择致病菌的快速检测技术提供指导。

本文引用格式

孙颖颖 , 董鹏程 , 朱立贤 , 张一敏 , 罗欣 , 毛衍伟 . 食源性致病菌快速检测研究进展[J]. 食品与发酵工业, 2020 , 46(17) : 264 -270 . DOI: 10.13995/j.cnki.11-1802/ts.024202

Abstract

Foodborne pathogens are important factors that affect food safety and bring about extensive and serious public health problems. The traditional quantitative plating technique is accurate and commonly used, but it is time-consuming and laborious, with obvious time lag. Therefore, it is of great significance to develop rapid and accurate detection technology of pathogens and toxins in food and provide real-time results to ensure food safety and reduce foodborne diseases. In recent years, lots of rapid detection and identification methods for food borne pathogens have emerged and are developed. Among which, vibration spectroscopy, polymerase chain reaction (PCR) and biosensor are considered to possess the biggest potential. Their principles, characteristics and applications in food industry were summarized to provide references for the research and development of rapid detection technology, and to provide guidance for the selection of rapid detection technology for food industry.

参考文献

[1] DANIELLE M T,ELLVN P M,PARTICIA M G,et al.Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne diseases active surveillance network,10 US.sites,2015—2018[J].American Journal of Transplantation,2019,19(6):1 859-1 863.
[2] WEI Caijiao,ZHONG Junliang,HU Ting,et al.Simultaneous detection of Escherichia coli O157:H7,Staphylococcus aureus,and Salmonella,by multiplex PCR in milk[J].Biotech,2018,8(1):76.
[3] MINAROVICOVA J,WEGHOVA A,KACLIKOVA E.Evaluation of DNA extraction methods for culture-independent Real-Time PCR-Based detection of Listeria monocytogenes in Cheese[J].Food Analytical Methods,2020,13(3):667-677.
[4] 韩进兰,食源性疾病监测中病原微生物检验结果分析[J].临床检验杂志电子版,2020,9(1):122.
[5] JONES T F,YACKLEY J,Foodborne disease outbreaks in the United States:A historical overview[J].Foodborne Pathogens & Disease,2018,15(1):11-15.
[6] ZHAO Xihong,LI Mei,LIU Yao.Microfluidic-based approaches for foodborne pathogen detection[J].Microorganisms,2019,7(10):381.
[7] FARKAS K,MANNION F,HILLARY S,et al.Emerging technologies for the rapid detection of enteric viruses in the aquatic environment[J].Current Opinion in Environmental Science & Health,2020,16:1-6.
[8] KODOGIANNIS,VASSIILIS S.Application of an electronic nose coupled with fuzzy-wavelet network for the detection of meat spoilage[J].Food and Bioprocess Technology,2017,10(4):730-749.
[9] MUNGROO N A,OLIVEIRA G,NEETHIRAJAN S.SERS baced point-of-care detection of food-borne pathogens[J].Microchimica Acta,2015,183(2):697-707.
[10] LORENZ B,WICHMANN C,STOCKEL S,et al.Cultivation-free Raman spectroscopic investigations of bacteria[J].Trends in Microbiology,2017,25(5):413-424.
[11] ASSAF A,COEDELLA C B Y,THOUAND G.Raman spectroscopy applied to the horizontal methods ISO 6579:2002 to identify Salmonella spp. in the food industry[J].Analytical and Bioanalytical Chemistry,2014,406(20):4 899-4 910.
[12] MEISEL S,STOCKEL S,ROESCH P,et al.Identification of meat-associated pathogens via Raman microspectroscopy[J].Food Microbiology,2014,38:36-43.
[13] CIALLA D,MORZ A,RENE B,et al.Surface-enhanced Raman spectroscopy(SERS):progress and trends[J].Analytical and Bioanalytical Chemistry,2012,403(1):27-54.
[14] PAHLOW S,MARZ A,SEISE B,et al.Bioanalytical application of surface and tip enhanced Raman spectroscopy[J].Engineering in Life Science,2012,12(2):131-143.
[15] LIU Shuangshuang,LI Huanhuan,HASSAN M M,et al.Amplification of Raman spectra by gold nanorods combines with chemometrics for rapid classification of four Pseudomonas[J].International Journal of Food Microbiology,2019,304:58-67.
[16] LUO B S,LIN M I N.A portable Raman system for the identification of foodborne pathogenic bacteria[J].Journal of Rapid Method & Automation in Microbiology,2008,16(3):238-255.
[17] KOGLER M,RYABCHIKOV Y U,UUSITALO S,et al.Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification[J].Journal of Biophotonics,2018,11(7).DOI:10.1002/jbi0.201700225.
[18] SHAPAVAL V,WALCZAK B,GOGNIES S,et al.FTIR spectroscopic characterization of differently cultivated food related yeasts[J].The Analyst,2013,138(14):4 129-4 138.
[19] DAVIS R,MAUER L J.Subtyping of Listeria monocytogenes at the halptype level by Fourier transform infrared(FT-IR) spectroscopy and multivariate statistical analysis[J].International Journal of Food Microbiology,2011,150(2-3):140-149.
[20] ERNEST B,HUANG Xingyi,YI Ren,et al.Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model[J].Infrared Physics and Technology,2020,105.DOI:10.1016/j.infrared.2020.103220.
[21] TITO N B,RODEMANN T,POWELL S M.Use of near infrared spectroscopy to predict microbial numbers on Atlantic salmon[J].Food Microbiology,2012,32(2):431-436.
[22] DUAN Cui,CHEN Chunguang,KHAN M N,et al.Non-destructive determination of the total bacteria in flounder filet by portable near infrared spectrometer[J].Food Control,2014,48:18-22.
[23] HUANG Deqiu,ZHUANG Zhengfei,WANG Zhen,et al.Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria[J].Applied Surface Science,2019,497.DOI:10.1016/j.apsusc.2019.143825.
[24] DUAN Nuo,CHANG Boya,ZHANG Hui,et al.Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor[J]International Journal of Food Microbiology, 2016,218:38-43.
[25] MULLIS K B,FALOONA F A,SCHARF S J,et al.Specific enzymatic amplification of DNA in vitro:the polymerase chain reaction[J].Food Control,2014,48:18-22.
[26] FORGHANI F,WEI Shuai,OH D H.A rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of Bacillus cereus,Listeriia monocytogenes and Staphylococcus aureus in food[J].Journal of Food Protection,2016,79(5):810-815.
[27] GORDILLO R,JUAN J C,MARIA J A,et al.Development of PCR assays for detection of Escherichia coli O157:H7 in meat products[J].Meat Scinece,2011,88(4):763-773.
[28] TAYLOR T M,ELHANAFI D,DRAKE M,et al.Effect of food matrix and cell growth on PCR-based detection of Escherichia coli O157:H7 in ground beef[J].Journal of Food Protection,2005,68(2):225-232.
[29] WANG Yun,SALAZAR J K.Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices[J].Comprehensive Reviews in Food Science and Food Safety,2016,15(1):183-205.
[30] CHIANG Yucheng, TSEN Hauyang,CHEN Hsinyen,et al.Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens,Staphylococcus aureus,Streptococcus agalactiae,Enterobacter sakazakii,Escherichia coli O157:H7,Vibrio parahaemolyticus,Salmonella spp.and Pseudomonas fluoresc[J].Journal of Microbiol Methods,2012,88(1):110-116.
[31] 曲勤凤.重要食品掺假检测技术研究鱼糜制品中主料含量的测定 (荧光 PCR 法)[D].上海:复旦大学, 2011
[32] D’SOUZA C,KUMAR B K,RAI P,et al.Application of gyrB targeted SYBR green based qPCR assay for the specific and rapid detection of Vibrio vulnificus in seafood[J].Journal of Microbiological Methods, 2019.DOI:10.1016/j.mimet.2019.105747.
[33] HSU C F,TSAI T Y,PAN T M.Use of the duplex TaqMan PCR system for detection of Shiga-like toxin-producing Escherichia coli O157[J].Journal of Clinical Microbiology, 2005,43(6):2 668-2 673.
[34] WANG Lijun,YE Chenlian,XU Hengyi,et al.Development of an SD-PMA-mPCR assay with internal amplification control for rapid and sensitive detection of viable Salmonella spp.Shigella spp.and Staphylococcus aureus in food products[J].Food Control,2015,57:314-320.
[35] KIM H J,LEE H J,LEE K H,et al.Simultaneous detection of pathogenic Vibrio species using multiplex realtime PCR[J].Food Control,2012,23:491-498.
[36] MARTINON A,WILKINSON M G.Selection of optimal primer sets for use in a duplex sybr green-based,real-time polymerase chain reaction protocol for the detection of Listeria monocytogenes and Staphyloccocus aureus in foods[J].Food Saf,2011,31:297-312.
[37] JAYAN H,PU Hongbin,SUN Dawen.Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition:A review[J].Trends in Food Science & Technology, 2020:233-246.DOI:10.1016/j.tifs.2019.10.007.
[38] KHANSILI N,RATTU G,KRISHNA P M.Label-free optical biosensors for food and biological sensor applications[J].Sensors and Actuators B:Chemical,2018,265:35-49.
[39] KUSHWAHA A S,ANIL K,RAJEEV K,et al.Zinc oxide,gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of Pseudomonas like bacteria:A comparative study[J].Optik,2018:697-707.DOI:10.1016/j.ijleo.2018.07.066.
[40] SRISA-ART M,BOEHLE K E,GEISS B J,et al.Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation[J].Analytical Chemistry,2018,90(1):1 035-1 043.
[41] SHARMA H,MUTHARASAN R.Review of biosensors for foodborne pathogens and toxins[J].Sensors and Actuators B:Chemical,2013,183:535-549.
[42] MAJDINASAB M,HAYAT A,MARTY J L.Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples[J].TrAC Trends in Analytical Chemistry,2018,107:60-77.
[43] VASQUEZ G,REY A,RIVERA C,et al.Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae[J].Biosensors and Bioelectronics,2017,87:453-458.
[44] CHEN Yuhan,GUO Shuliang,ZHAO Min,et al.Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy[J].Biosensors and Bioelectronics,2018,119:215-220.
[45] LI Yong,MUSTAPHA A.Simultaneous detection of Escherichia coli O157:H7,Salmonella,and Shigella in apple cider and produce by a multiplex PCR[J].Food Prot,2004,67:27-33.
[46] KEARNS H,GOODACRE R,JAMIESON L,et al.SERS detection of multiple anti-microbial resistant pathogens using nanosensors[J].Analytical Chemistry,2017,89(23):12 666-12 673.
[47] CAREY J R,SUSLICK K S,HULKOWER K I,et al.Rapid identification of bacteria with a disposable colorimetric sensing array[J].Journal of the American Chemical Society,2011,133(19):7 571-7 576.
[48] LIN Yuehhui,CHEN Szhau,CHUANG Yaochen,et al.Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screenprinted carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7[J].Biosens Bioelectron,2008,23:1 832-1 837.
[49] PAL S,YING W,ALOCILIA E C,et al.Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices[J].Biosystems Engineering,2008,99:46.
文章导航

/