研究报告

蒸汽爆破预处理的苦荞麸皮不溶性膳食纤维理化特性及结构研究

  • 何晓琴 ,
  • 李苇舟 ,
  • 夏晓霞 ,
  • 雷琳 ,
  • 赵吉春 ,
  • 明建
展开
  • 1(西南大学 食品科学学院,重庆,400715)
    2(西南大学 食品贮藏与物流研究中心,重庆,400715)
硕士研究生(明建教授为通讯作者,E-mail:mingjian1972@163.com)

收稿日期: 2020-04-16

  修回日期: 2020-05-08

  网络出版日期: 2020-10-23

基金资助

国家自然科学基金面上项目(31771970);重庆市技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0407)

Study on physicochemical properties and structure of insoluble dietary fiber from Tartary buckwheat bran pretreated by steam explosion

  • HE Xiaoqin ,
  • LI Weizhou ,
  • XIA Xiaoxia ,
  • LEI Lin ,
  • ZHAO Jichun ,
  • MING Jian
Expand
  • 1(College of Food Science, Southwest University, Chongqing 400715, China)
    2(Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China)

Received date: 2020-04-16

  Revised date: 2020-05-08

  Online published: 2020-10-23

摘要

以苦荞麸皮为原料,引入蒸汽爆破技术对其进行预处理,研究不同强度汽爆预处理苦荞麸皮的水不溶性膳食纤维(insoluble dietary fiber from Tartary buckwheat bran pretreated by steam explosion, SE-IDF)理化特性及结构变化。结果表明,与未汽爆处理相比,SE-IDF的持水力、持油力和膨胀力显著降低(P<0.05),其中在汽爆强度低于1.2 MPa,90 s时下降较慢;而SE-IDF的α-淀粉酶活性抑制能力、葡萄糖吸收能力和体外发酵能力显著提高(P<0.05),且随汽爆强度的增加呈先增强后减弱的趋势,整体在1.2 MPa,90 s条件时达到最优;在该汽爆条件下,差示扫描量热分析表明SE-IDF峰值温度提高了9.26 ℃,热稳定性增强;傅里叶红外光谱显示SE-IDF羟基等官能团位置发生了小范围红移,推测纤维素、半纤维素和木质素成分可能发生部分降解;扫描电镜观察显示SE-IDF表面明显破裂疏松,尺寸减小,相对表面积增大。表明汽爆处理可以改善苦荞麸皮水不溶性膳食纤维的理化特性和结构,且较优条件为1.2 MPa,90 s,可为苦荞麸皮水不溶性膳食纤维的开发利用及保健食品的开发提供理论参考。

本文引用格式

何晓琴 , 李苇舟 , 夏晓霞 , 雷琳 , 赵吉春 , 明建 . 蒸汽爆破预处理的苦荞麸皮不溶性膳食纤维理化特性及结构研究[J]. 食品与发酵工业, 2020 , 46(18) : 47 -53 . DOI: 10.13995/j.cnki.11-1802/ts.024224

Abstract

The steam explosion technology was introduced to pretreat the Tartary buckwheat bran, and the physicochemical properties and structural changes of insoluble dietary fiber pretreated with different steam explosion intensity (SE-IDF) were studied. The results showed that the water holding capacity, oil holding capacity and swelling capacity of SE-IDF were significantly lower than those of the non-explosion treatment (P<0.05), and the decrease was slower when the explosion strength was lower than 1.2 MPa and 90 s. However, the inhibition capacity of α-amylase activity, glucose absorption capacity and in vitro fermentation capacity of SE-IDF were significantly increased (P<0.05). And with the increase of steam explosion intensity, it showed a trend of increasing first and then decreasing, and the optimum condition was found at 1.2 MPa and 90 s. Under this condition, thermodynamic parameters suggested that the peak temperature of SE-IDF was increased by 9.26 ℃, and the thermal stability was enhanced. Infrared spectrum showed that the position of hydroxyl group and other functional groups of SE-IDF had a small red shift, which suggested that the cellulose, hemicellulose and lignin components might be partially degraded. Furthermore, the SEM observation showed that the surface of SE-IDF was obviously broken and loose, the particle size was decreased and the relative surface area was increased. Therefore, steam explosion could effectively improve the physicochemical properties and structure of Tartary buckwheat bran IDF under the optimal condition of 1.2 MPa and 90 s. This study provided a theoretical reference for the development and utilization of Tartary buckwheat bran IDF and the development of health food.

参考文献

[1] 唐宇, 张小利, 何晓琴, 等. 体外模拟胃肠消化过程中蒸汽爆破处理的苦荞麸皮的抗氧化及抗增殖活性[J]. 食品与发酵工业, 2019, 45(3): 103-111.
[2] 胡珊兰, 朱若华. 不同种类燕麦和苦荞中的膳食纤维测定[J]. 食品科学, 2009, 30(23): 157-160.
[3] QI Jing, LI Yue, KINGSLEY G M, et al. The effect of chemical treatment on the in vitro hypoglycemic properties of rice bran insoluble dietary fiber[J]. Food Hydrocolloids, 2016, 52(5): 699-706.
[4] TREMAROLI V, BCKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7 415): 242-249.
[5] 陈旭清. 荞麦壳精深加工综合利用研究[D]. 西安: 陕西科技大学, 2014: 37-45.
[6] 胡燃. 小麦麸皮中蛋白与纤维的综合利用研究[D]. 无锡: 江南大学, 2015: 67-75.
[7] HAN Guangping, DENG J, ZHANG Shuyin, et al. Effect of steam explosion treatment on characteristics of wheat straw[J]. Industrial Crops and Products, 2009, 31(1): 28-33.
[8] SUI Wenjie, CHEN Hongzhang. Extraction enhancing mechanism of steam exploded radix astragali[J]. Process Biochemistry, 2014, 49(12): 2 181-2 190.
[9] YU Zhengdao, ZHANG Bailiang, YU Fuqiang, et al. A real explosion: The requirement of steam explosion pretreatment[J]. Bioresource Technology, 2012, 121: 335-341.
[10] 何晓琴, 李苇舟, 李富华, 等. 蒸汽爆破预处理在农产品加工副产物综合利用中的应用[J]. 食品与发酵工业, 2019, 45(8): 252-257.
[11] 龚凌霄. 青稞全谷物及其防治代谢综合征的作用研究[D]. 杭州: 浙江大学, 2013: 99-113.
[12] ASP N G, JOHANSSON C G, HALLMER H, et al. Rapid enzymatic assay of insoluble and soluble dietary fiber[J]. Journal of Agricultural and Food Chemistry, 1983, 31(3): 476-482.
[13] WANG Lei, XU Honggao, YUAN Fang, et al. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J]. Food Chemistry, 2015, 185: 90-98.
[14] CHAU Chifai, HUANG Yaling. Characterization of passion fruit seed fibers-a potential fibre source[J]. Food Chemistry, 2004, 85(2): 189-194.
[15] PEERAJIT P, CHIEWCHAN N, DEVAHASTIN S. Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues[J]. Food Chemistry, 2012, 132(4): 1 891-1 898.
[16] SHIMOTOYODOME A, YAJIMA N, SUZUKI J, et al. Effects of coingestion of different fibers on fecal excretion and cecal fermentation in rats[J]. Nutrition Research, 2005, 25(12): 1 085-1 096.
[17] ZHAO Guohua. NYMAN M, JONSSON J A. Rapid determination of short-chain acids in colonic contents and faces of humans and rats by acidified water-extraction and direct-injection gas chromatography[J]. Biomedical Chromatograp, 2006, 20(8): 674-682.
[18] 李璐, 黄亮, 苏玉, 等. 超微化雷竹笋膳食纤维的结构表征及其功能特性[J]. 食品科学, 2019, 40(7): 74-81.
[19] 钟雅云, 杨敏, 何沁峰, 等. 海带与小麦麸皮由来不溶性膳食纤维的酶辅助提取及其功能特性比较[J]. 中国食品学报, 2019, 19(11): 124-131.
[20] 段振. 石榴皮不溶性膳食纤维的提取、体外降血脂活性研究及咀嚼片制备[D]. 西安: 陕西师范大学, 2018: 115-126.
[21] 姜永超, 林丽静, 龚霄, 等. 物理改性处理对菠萝皮渣膳食纤维物化特性的影响[J]. 热带作物学报, 2019, 40(5): 973-979.
[22] 任雨离, 刘玉凌, 何翠, 等. 微波和微粉碎改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业, 2017, 43(8): 145-150.
[23] OU Shiyi, KWOK K C, LI Yan, et al. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose[J]. Journal of Agricultural and Food Chemistry, 2001, 49(25): 1 026-1 029.
[24] GALISTEO M, DUARTE J, ZARZUELO A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome[J]. Journal of Nutritional Biochemistry, 2008, 19(2): 71-84.
[25] CHAU Chifai, WANG Yiting, WEN Yuling. Different micronization methods significantly improve the functionality of carrot insoluble fiber[J]. Food Chemistry, 2007, 100(4): 1 402-1 408.
[26] 郭增旺, 马萍, 刁静静, 等. 超微型大豆皮水不溶性膳食纤维理化及吸附特性[J]. 食品科学, 2018, 39(5): 106-112.
[27] NISHIMUNE T, YAKUSHIJI T, SUMIMOTO T, et al. Glycemic response and fiber content of some foods[J]. Journal of American Clinical Nutrition, 1991, 54(2): 414-419.
[28] 汪海波. 燕麦中β-葡聚糖的化学结构、溶液行为及降血糖作用的机制研究[D]. 武汉: 华中农业大学, 2004: 198-212.
[29] TUNCIL Y E, THAKKAR R D, MARCIA A D, et al. Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions[J]. Scientific Reports, 2018, 8(1): 166-175.
[30] 张莉莉, 宁冬雪, 康丽君, 等. 响应面试验优化蒸汽爆破酸解制备玉米皮渣还原糖工艺及水解程度分析[J]. 食品科学, 2016, 37(16): 75-82.
[31] MA Mengmei, MU Taihui. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry, 2016, 194: 237-246.
[32] 郭文奎, 焦月华, 刘飞. 小米和燕麦中水溶性膳食纤维结构表征及对体外发酵体系短链脂肪酸的影响[J]. 食品科技, 2017, 42(3): 190-194.
[33] ZHAO Xiaoyan, CHEN Jun, CHEN Fengliang, et al. Surface characterization of corn stalk superfine powder studied by FTIR and XRD[J]. Colloids and Surfaces B-Biointerfaces, 2013, 104(5): 207-212.
[34] 杨静, 蒋剑春, 张宁, 等. 蒸汽爆破预处理对橡子壳酶水解效果的影响[J]. 太阳能学报, 2014, 35(12): 2 565-2 569.
[35] 谢璇. 麦麸对面团特性的影响及其作用机理[D]. 天津: 天津科技大学, 2017: 178-213.
[36] SUI Wenjie, CHEN Hongzhang. Effects of water states on steam explosion of lignocellulosic biomass[J]. Bioresource Technololy, 2016, 199(9): 155-163.
[37] SUI Wenjie, CHEN Hongzhang. Extraction enhancing mechanism of steam exploded radix astragali[J]. Process Biochemistry, 2014, 49(12): 2 181-2 190.
文章导航

/