甘薯在常温贮运环境下易发芽,使用外源乙烯处理能很好地起到抑芽作用,但乙烯浓度过高会引起裂果现象,降低甘薯商品性。该实验使用0、0.5、1、2 g/L四种质量浓度外源乙烯处理甘薯,研究不同质量浓度外源乙烯处理对甘薯裂果及细胞壁代谢的影响。结果表明,乙烯处理组均能抑制甘薯发芽,且质量浓度越高效果越好,但2 g/L乙烯组会导致甘薯块根开裂,其余组均无块根开裂现象,原因是随着箱内乙烯质量浓度增大,多酚氧化酶(polyphenol oxidase,PPO)、过氧化物酶(peroxidase,POD)活性增强,导致细胞壁硬化及其延伸性降低;0.5、1 g/L乙烯组可在中后期延缓块根多聚半乳糖醛酸酶(polygalacturonase,PG)、纤维素酶(cellulase,Cx)活性升高、原果胶含量下降;而2 g/L外源乙烯处理会明显增大甘薯细胞壁水解酶如PG、Cx、β-葡萄糖苷酶(β-gluosidase,β-Glu)的活性,促使甘薯原果胶含量下降、水溶性果胶含量上升,块根开裂率增大。
Sweet potato is easy to sprout under high temperature environment, it has been found that exogenous ethylene treatment could effectively inhibit the sweet potato germination. But sweet potato would crack under high concentration of ethylene which reduces its commercial value. In this paper, sweet potatoes were treated with exogenous ethylene at the concentrations of 0,0.5,1 and 2 g/L. And based on the result, it analyzed the changes of germination rate, root cracking rate, raw pectin content, soluble pectin content, polygalacturonase (PG), cellulase (Cx), β-gluosidase (β-Glu), polyphenol oxidase (PPO), peroxidase (POD) of sweet potato and explored. The effects of different concentrations of exogenous ethylene on cracking and cell wall metabolism of sweet potato were analyzed. The results indicated that all ethylene treatment groups could inhibit the germination of sweet potato, and the higher ethylene concentration, the better the germination effect. However, the high concentration of 2 g/L ethylene caused the sweet potato to crack while the other groups had no cracking phenomenon. As the ethylene concentration increased, the activities of PPO and POD would increase, which led to hardening of cell wall and reduced extensibility. In addition, 0.5 g/L and 1 g/L ethylene could delay the increase of PG, Cx activities and the original pectin content in the middle and late stages. And 2 g/L exogenous ethylene treatment significantly increased the activities of sweet potato cell wall hydrolase (PG, Cx and β-glucosidase), and also promoted the decline of sweet potato pectin content and water-soluble pectin content, which eventually led to the increase of cracking.
[1] 张碧莹,唐玲,张静,等.不同加工方式对甘薯汁品质及抗氧化活性的影响[J].食品与发酵工业,2017,43(12):157-163.
[2] 陈慧芳.甘薯发芽特点及苗床管理[J].陕西农业科学,2010,56(6):104-106.
[3] 王鹏,刘录详,纪瑞瑞,等.60Co-γ射线辐照对甘薯农艺性状变异的影响[J].植物生理学报,2015,51(7):1 167-1 172.
[4] HU W, TANAKA S I. Effects of heat treatment on the quality and storage life of sweet potato[J]. Journal of the Science of Food & Agriculture, 2010, 87(2): 313-319.
[5] BLAUWER V D, DEMEULEMEESTER K, DEMEYERE A, et al. Maleic hydrazide: Sprout suppression of potatoes in the field[J]. Communications in agricultural and applied biological sciences, 2012, 77(3):343-351.
[6] GEBHARD B. Exogenous ethylene inhibits sprout growth in onion bulbs[J]. Annals of Botany, 2008, 103(1): 23-28.
[7] KOCH M,NAUMANN M,PAWELZIK E.Cracking and fracture properties of potato (Solanum tuberosum L.) tubers and their relation to dry matter,starch, and mineral distribution[J].Journal of the Science of Food and Agriculture,2018,99(6):3 149-3 156.
[8] 陈继群,刘丽贞,陈杰忠,等.不同钙处理对脐橙裂果及其细胞壁酶活性的影响[J].华南农业大学学报,2014,35(6):29-32.
[9] 丁改秀,王保明,王小原,等.GA3对壶瓶枣细胞壁组分代谢及裂果率的影响[J].山西农业科学,2013,41(8):819-821;830.
[10] 邱燕萍,陈洁珍,欧良喜,等.糯米糍荔枝裂果与内源激素变化的关系[J].果树学报,1999,16(4):276-279.
[11] KITTEMANN D,NEUWALD D A,STREIF J.Influence of Calcium on fruit firmness and cell wall degrading enzyme activity in ‘Elstar’ apples during storage[J].Acta Horticulturae, 2010(877): 1 037-1 043.
[12] HOFSHI R,ARPAIA M L.Avocado fruit abnormalities and defects revisited[J].California Avocado Society Yearbook, 2002, 86:147-162.
[13] 陈曦,邓吉良,陈日东,等.UV-C处理对甘薯贮藏品质的影响[J].热带作物学报,2019,40(2):373-379.
[14] PANKOMERA P.Effects of postharvest treatments on sweetpotato (Ipomoea batatas) storage quality:A thesis presented in partial fulfilment of the requirements for the degree of doctor of philosophy in food technology at massey university,New Zealand[D].New Zealand: Massey University, 2015.
[15] 曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007.
[16] ZHOU Y,DENG L,ZENG K.Enhancement of biocontrol efficacy of pichia membranaefaciens by hot water treatment in postharvest diseases of citrus fruit[J].Crop Protection,2014,63:89-96.
[17] MAEHLY A C,CHANCE B. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 2006:357-424.
[18] 杨金姝,木泰华,马梦梅.果胶结构、提取方法及乳化特性研究进展[J].食品工业科技,2018,39(14):315-322.
[19] BALBONTÍN C,AYALA H,BASTIAS R M,et al.Cracking in sweet cherries:A comprehensive review from a physiological,molecular,and genomic perspective[J].Chilean Journal of Agricultural Research,2013,73(1):66-72.
[20] TUCKER G,YIN X R,ZHANG A D,et al.Ethylene and fruit softening[J].Food Quality and Safety,2017,1(4):253-267.
[21] 段学武,张昭其,季作梁.PG酶与果实的成熟软化[J].果树学报,2001,18(4):229-233.
[22] 王晓涛,魏佩玲,胡波,等.纤维素降解酶研究进展[J].草食家畜,2019(3):13-18.
[23] MACDONALD M T,LADA R R,DORAIS M,et al.Endogenous and exogenous ethylene induces needle abscission and cellulase activity in post-harvest balsam fir(Abies balsamea L.)[J].Trees Sturcture & Function,2011,25(5):947-952.
[24] 潘利华,罗建平.β-葡萄糖苷酶的研究及应用进展[J].食品科学,2006,27(12):803-807.
[25] KIM Y H,PARK S C,JI C Y,et al.Diverse antioxidant enzyme levels in different sweetpotato root types during storage root formation[J].Plant Growth Regulation,2015,75(1):155-164.
[26] ARINZE A E,SMITH I M.Distribution of polygalacturonase,total phenolic substances,polyphenol oxidase and peroxidase in rot zones in sweet potato[J].Plant Pathology,2007,31(2):119-122.
[27] 姜爱丽,孟宪军,胡文忠,等.外源乙烯处理对采后蓝莓感官性状和呼吸代谢的影响[J].食品工业科技,2011,32(9):375-378;383.
[28] 程玉娇,李云云,张敏.热处理对‘塔罗科’血橙物流变温环境下的保鲜效果[J].食品科学,2016,37(6):254-260.
[29] BURNETTE F S.Peroxidase and its relationship to food flavor and quality:A review[J].Journal of Food Science,1977,42(1):1-6.
[30] 程曦.控温包装在莴笋尖常温物流过程中的保鲜机理及优化研究[D].重庆:西南大学,2017.
[31] 肖婷,陈东秀,罗鸿,等.乙醇熏蒸对红薯尖冷藏期间品质的影响[J].食品与发酵工业,2019,45(15):209-217.