利用电子鼻嗅闻指纹分析、电子舌的滋味指纹分析、模糊数学感官评价、线性多元回归方程、灰色关联分析,对6种不同烟熏液制成的熏牛肉进行品质分析。结果表明,电子鼻检测结果显示主成分1、2的累积贡献率为89.802%,电子舌检测的结果显示主成分1、2的累积贡献率为86.903%,能够反映样品的整体信息。在模糊数学感官评价中,试验组感官评分依次为Oil-H>H>C-10-11>C-10-7>C-10-10>空白;建立了电子鼻的传感器与模糊数学感官评价之间的关联度与线性回归关系,两者之间的灰色相关系数为0.806 4~0.832 6,均大于0.80。由此可见,Oil-H烟熏液为最佳选择。该文建立了电子鼻与模糊数学感官评价之间的联系,为电子鼻等价替代感官分析评价熏牛肉烟熏工艺与品质的可行性和准确性提供技术支撑。
The quality evaluation system of smoked beef made from six smoked liquids was established using electronic nose sniffing fingerprint analysis, electronic tongue flavor fingerprint analysis, fuzzy mathematical sensory evaluation, linear multiple regression equation, and gray correlation analysis method. The results showed that the cumulative contribution rate of the main components was 89.802% and 86.903% for electronic nose test and electronic tongue test, respectively, which could reflect the overall information of the sample. Moreover, the sensory scores of the six smoke liquids were in order Oil-H>H>C-10-11>C-10-7>C-10-10> blank in the fuzzy mathematical sensory evaluation. And the correlation and linear regression equation between the sensor of the electronic nose and the fuzzy mathematical sensory evaluation was established. The correlation coefficients between the sensors of the electronic nose and the sensory scores obtained from fuzzy mathematics were between 0.806 4 and 0.832 6, both greater than 0.80. Based on the above test, the smoked beef produced by adding Oil-H smoke liquid was the best. This study established the direct connection between electronic nose and fuzzy mathematical sensory evaluation method, which provided technical support to optimize the smoking beef and improve the evaluation accuracy of smoking beef quality.
[1] 白娟,张瑶,汪雪瑞,等. 基于电子舌和电子鼻的鲊肉粉风味分析[J]. 食品与发酵工业, 2019, 45(3): 270-274.
[2] 刘源. 鸭肉风味及其在加工过程中的变化研究[D]. 南京:南京农业大学, 2006.
[3] 徐赛,陆华忠,周志艳,等. 基于理化指标和电子鼻的果园荔枝成熟度识别方法[J]. 农业机械学报, 2015, 46(12): 226-232.
[4] 肖智超,葛长荣,周光宏,等. 肉的风味物质及其检测技术研究进展[J]. 食品工业科技, 2019, 40(4): 325-330.
[5] MADESHWARI E, NOEL N, JAYANTH K B, et al. Freshness assessment of broccoli using electronic nose[J]. Measurement, 2019, 145: 735-743.
[6] DIEGO M M G, JAVUER G G, ANDREA B, et al. Fast tool based on electronic nose to predict olive fruit quality after harvest[J]. Postharvest Biology and Technology, 2020,160: 111 058.
[7] GHASEMI V M, APETREI C, LOZANO J, et al. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods[J]. Trends in Food Science & Technology, 2018, 80:71-92.
[8] ASYA K, LARYSA A. Electronic nose combined with chemometric approaches to assess henticity and adulteration of sausages by soy protein [J].Sensors and Actuators B: Chemical, 2020,303:127 250.
[9] LOUTFI A, CORADESCHI S, GANESH K M, et al. Electronic noses for food quality: A review [J]. Journal of Food Engineering, 144, 2015,144(1):103-111.
[10] 国婷婷,殷廷家,杨正伟,等. 基于WPT-IAF-ELM的小麦储存年限电子舌检测分析[J]. 农业机械学报, 2019, 50(S1): 404-410.
[11] 徐宝才,李聪,马倩,等. 基于电子鼻和电子舌分析盐水鸭风味的差异性[J]. 中国食品学报, 2017, 17(12): 279-286.
[12] ZENG M M, WANG J H,ZHANG M R, et al. Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties[J].Food Chemistry, 2018,239:111–118.
[13] LARA S G, ROMAN B,JUAN S, et al. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue[J]. Food Control,2018,91(8): 254-260.
[14] LEE H J, CHOE J, KIM M, et al. Role of moisture evaporation in the taste attributes of dry- and wet-aged beef determined by chemical and electronic tongue analyses[J]. Meat Science, 2019, 151: 82-88.
[15] 焦云鹏,贡汉坤. 模糊综合评判在混合重组鱼肉蛋白香肠中的应用[J]. 现代食品科技, 2013, 29(4): 804-807.
[16] 金雪花,郭顺堂,陈辰,等. 基于模糊感官评价的大豆品种对豆浆加工品质影响分析[J]. 食品科学, 2019, 40(17): 59-64.
[17] 孟舒雨,李苗云,赵改名,等. 基于灰色关联度法的狮子头风味电子鼻分析与感官评分相关性[J]. 肉类研究, 2019, 33(4): 24-28.
[18] 武苏苏,赵改名,柳艳霞,等. 基于主成分分析法的煮制时间对卤制鸡肉风味的影响分析[J]. 食品与发酵工业, 2014, 40(10): 194-199.
[19] 王琼,徐宝才,于海,等. 电子鼻和电子舌结合模糊数学感官评价优化培根烟熏工艺[J]. 中国农业科学, 2017, 50(1): 161-170.
[20] 宋志美,刘乃雁,王元英,等.灰色关联度法在烤烟品种重要性状综合评价中的运用[J].中国烟草科学, 2011, 32(2): 17-19.
[21] 高琦,李加恒,韩昊廷,等. 基于灰色关联分析法研究不同干燥方式对芜菁脆片的影响[J]. 食品科学, 2019, 40(5): 95-101.
[22] 魏劲松,徐洲,黄宪龙,等. 模糊数学结合响应面法优化葛根酒发酵工艺参数及其香气成分分析[J]. 食品工业科技, 2019, 40(5): 193-200.
[23] 代文婷,吴宏,邢丽杰,等. 模糊数学结合响应面法优化番茄调味酱的配方[J]. 食品工业科技, 2019, 40(11): 211-217.
[24] 杨阳,沈诚,桑跃,等. 电子舌在甜菊糖甜味特性评价中的应用[J]. 农业机械学报, 2015, 46(6): 239-243.
[25] MIGUEL P, LAURA E G. A 21st century technique for food control: Electronic noses[J]. Analytica Chimica Acta, 2009,638(1): 1-15.
[26] 鉏晓艳,王伟琼,熊光权. 模糊数学评价和主成分分析电子束辐照处理后的鲈鱼品质[J]. 食品科学, 2017, 38(15): 38-42.
[27] 殷勇,申晓鹏,于慧春. 基于KECA+FDA的白酒电子鼻多特征鉴别方法[J]. 农业机械学报, 2018, 49(4): 374-380.