研究报告

白酒酿造窖泥未培养微生物菌群的可培养化策略

  • 卢萌萌 ,
  • 任聪 ,
  • 聂尧 ,
  • 徐岩
展开
  • 1(江南大学 生物工程学院,酿造微生物学与应用酶学研究室,江苏 无锡,214122);
    2(工业生物技术教育部重点实验室 (江南大学),江苏 无锡,214122)
第一作者:硕士研究生(任聪副研究员和聂尧教授为共同通讯作者,E-mail:congren@jiangnan.edu.cn; ynie@jiangnan.edu.cn)

收稿日期: 2020-03-19

  修回日期: 2020-04-02

  网络出版日期: 2020-11-02

基金资助

国家自然科学基金项目(21706097); 国家重点研发计划项目(2016YFD0400503)

Cultivation strategy for unculturable microbiota in pit mud involved in strong-flavor Baijiu fermentation

  • LU Mengmeng ,
  • REN Cong ,
  • NIE Yao ,
  • XU Yan
Expand
  • 1(Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China);
    2(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)

Received date: 2020-03-19

  Revised date: 2020-04-02

  Online published: 2020-11-02

摘要

窖泥是厌氧微生物的重要栖息地,厌氧微生物菌群的代谢活动对浓香型白酒的香气和风味形成起着重要作用。但大多数窖泥厌氧微生物尚未能在人工实验室培养条件下培养,这严重阻碍了对窖泥厌氧菌群功能的解析。采用CGM、NBM和MCI 三种营养成分丰富度不同的培养基,以典型窖泥作为菌群接种源,探索富集菌群的种类与动力学变化。扩增子测序分析表明,寡营养的MCI培养基对于富集窖泥主体菌群是较为有效的,可以同时富集得到产甲烷菌群和细菌菌群,主要包括古菌的广古菌门(Euyarchaeota)、细菌的拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)。使用基于MCI培养基的寡营养技术能有效富集窖泥中高丰度和低丰度厌氧菌,如普雷沃氏菌科(Prevotellaceae)、理研菌科(Rikenellaceae)、Dysgonomonadaceae、太阳杆菌科(Heliobacteriaceae)、瘤胃菌科(Ruminococcaceae)和甲烷八叠球菌科(Methanosarcinaceae)等;同时对扩增子测序无法检测的稀有微生物,包括甲烷鬃菌科(Methanosaetaceae)、消化链球菌科(Peptostreptococcaceae)、肠杆菌科(Enterobacteriaceae)、Oligosphaeraceae、Cloacimonadaceae、纤维杆菌科(Fibrobacteraceae)和Pedosphaeraceae等也具有良好的富集作用。结合宏基因组学技术,寡培养技术展现出在解析窖泥微生物菌群的物种组成、菌群结构和代谢潜能等方面的重要价值,为深入剖析窖泥未培养厌氧菌对窖泥依赖型白酒风味物质合成贡献起到重要作用。

本文引用格式

卢萌萌 , 任聪 , 聂尧 , 徐岩 . 白酒酿造窖泥未培养微生物菌群的可培养化策略[J]. 食品与发酵工业, 2020 , 46(19) : 9 -16 . DOI: 10.13995/j.cnki.11-1802/ts.023991

Abstract

Pit mud is an important habitat for anaerobic microbes that are involved in the production of aromas and flavors for strong-flavor Baijiu. However, most of the anaerobes have not been cultured under artificial culture conditions, which severely hinders the understanding of the functions of anaerobes in pit mud. To explore the types and dynamics of the enriched microbiota, CGM, NBM, and MCI culture media with different nutrients were used. Typical pit muds from a Chinese strong-flavor type liquor distillery were used as inocula. Combined with amplicon sequencing technique, the results showed that oligotrophic MCI medium was the most effective medium to enrich the dominant microbes in pit muds, including Euyarchaeota, Bacteroidetes and Firmicutes at the same time. The oligotrophic culturing based on MCI medium not only enriched the high- and low-abundance anaerobes in pit muds such as Prevotellaceae, Rikenellaceae, Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae and Methanosarcinaceae, but also effectively enriched rare anaerobes such as Methanosaetaceae, Peptostreptococcacea, Enterobacteriaceae, Oligosphaeraceae, Cloacimonadaceae, Fibrobacteraceae, and Pedosphaeraceae. More detailed microbial structures and species composition of the enriched microbiota were further revealed by metagenomics sequencing. In this study, combined with high-throughput sequencing approaches, oligotrophic culturing technique shows high values on illuminating the classification and genomic structures as well as the metabolic potentials of pit mud microbiota.

参考文献

[1] HU X,DU H,REN C,et al.Illuminating anaerobic microbial community and cooccurrence patterns across a quality gradient in Chinese liquor fermentation pit muds[J].Applied and Environmental Microbiology,2016,82(8):2 506-2 5015.
[2] ZHU X,ZHOU Y,WANG Y,et al.Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6[J].Biotechnology for Biofuels,2017,10(1):102.
[3] ZHU X, TAO Y, LIANG C,et al.The synthesis of n-caproate from lactate:A new efficient process for medium-chain carboxylates production[J].Scientific Reports,2015,5:14 360.
[4] CHAI L J,XU P X,QIAN W,et al.Profiling the clostridia with butyrate-producing potential in the mud of Chinese liquor fermentation cellar[J].International Journal of Food Microbiology,2019,297:41-50.
[5] 蒲秀鑫,柴丽娟,徐鹏翔,等.泸型酒窖泥中梭菌的分离及代谢产物分析[J].微生物学报,2019,59(12):2 427-2 436.
[6] TAO Y,LI J,RUI J,et al.Prokaryotic communities in pit mud from different-aged cellars used for the production of Chinese strong-flavored liquor[J].Applied and Environmental Microbiology,2014,80(7):2 254-2 260.
[7] TAO Y,WANG X,LI X,et al.The functional potential and active populations of the pit mud microbiome for the production of Chinese strong-flavour liquor[J]. Microbial Biotechnology,2017,10(6):1 603-1 615.
[8] DUSSEAUX S,CROUX C,SOUCAILLE P,et al.Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture[J].Metabolic Engineering,2013,18:1-8.
[9] GRABOWSKI A,TINDALL B J,BARDIN V,et al.Petrimonas sulfuriphila gen. nov.,sp.nov.,a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(3):1 113-1 121.
[10] MCINERNEY M J,BRYANT M P,PFENNIG N.Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens[J].Archives of Microbiology,1979,122(2):129-135.
[11] SAMPSON T R,DEBELIUS J W,THRON T,et al.Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease[J].Cell,2016,167(6):1 469-1 480; 1 492.
[12] WALTERS W,HYDE E R,BERG-LYONS D,et al.Improved bacterial 16S rRNA gene (V4 and V4-5) andfungal internal transcribed spacer marker gene primers for microbial community surveys[J].Msystems,2016,1(1):e00 009-e00 015.
[13] MAGOC T,SALZBERG S L.FLASH:fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics, 2011,27(21):2 957-2 963.
[14] CAPORASO J G,KUCZYNSKI J,STOMBAUGH J,et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods,2010,7(5):335-336.
[15] EDGAR R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.
[16] LI D, LIU C M,LUO R,et al.MEGAHIT:an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J].Bioinformatics,2015,31(10):1 674-1 676.
[17] FU L,NIU B,ZHU Z,et al.CD-HIT:accelerated for clustering the next-generation sequencing data[J].Bioinformatics,2012,28(23): 3 150-3 152.
[18] BUCHFINK B,XIE C,HUSON D H.Fast and sensitive protein alignment using DIAMOND[J].Nature Methods,2015,12(1):59-60.
[19] ALTSCHUL S F,MADDEN T L,SCHAFFER A A,et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J].Nucleic Acids Research,1997,25(17):3 389-3 402.
[20] 岳秀娟,余利岩,李秋萍,等.自然界中难分离培养微生物的分离和应用[J].微生物学通报,2006(3):77-81.
[21] 冀世奇. 海洋微生物高通量培养和分选技术的建立及应用[D].青岛:中国海洋大学,2011.
[22] 吴衍庸.泸型梭菌己酸发酵应用的理论与实践[J].酿酒科技,2007(11):131-132;135.
[23] 侯小歌,王俊英,李学思,等.浓香型白酒窖池主要功能性微生物的研究进展[J].酿酒科技,2013(2):96-101;106.
[24] MU D S,LIANG Q Y,WANG X M,et al.Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing[J].Microbiome,2018,6(1):230.
[25] JANSSEN P H,YATES P S,GRINTON B E,et al.Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions acidobacteria,actinobacteria,proteobacteria,and verrucomicrobia[J].Applied and Environmental Microbiology,2002,68(5):2 391-2 396.
[26] 郭壮,赵慧君,雷敏,等.白酒窖泥微生物多样性研究方法及进展[J].食品研究与开发,2018,39(22):200-207.
[27] 熊亚. 泸州老窖不同窖龄窖泥中细菌及古菌种群多样性和系统发育研究[D].雅安:四川农业大学,2014.
[28] MORRIS R M,RAPPE M S,CONNON S A,et al.SAR11 clade dominates ocean surface bacterioplankton communities[J].Nature,2002,420(6 917):806-810.
[29] 周楠,姜成英,刘双江.从环境中分离培养微生物:培养基营养水平至关重要[J].微生物学通报,2016,43(5):1 075-1 081.
[30] 曾建民,曾振顺,原红娟,等.难培养微生物培养方法的研究进展[J].生物技术进展,2012,2(3):165-170.
[31] 邢磊,赵圣国,郑楠,等.未培养微生物分离培养技术研究进展[J].微生物学通报,2017,44(12):3 053-3 066.
文章导航

/