生产与科研应用

响应面优化马齿苋黄酮水提工艺及其抗氧化活性评价

  • 王杰 ,
  • 王瑞芳 ,
  • 王园 ,
  • 任雪荣 ,
  • 陈秋燕 ,
  • 齐景伟 ,
  • 王浩然 ,
  • 杨帆 ,
  • 赵旭阳 ,
  • 郭文浩 ,
  • 安晓萍
展开
  • 1(内蒙古农业大学 动物科学学院,内蒙古 呼和浩特,010018);
    2(内蒙古自治区草食家畜饲料工程技术研究中心,内蒙古 呼和浩特,010018)
第一作者:本科生(王瑞芳讲师和安晓萍副教授为共同通讯作者,E-mail:RFWang019@126.com;xiaoping_an@163.com)

收稿日期: 2020-04-21

  修回日期: 2020-05-29

  网络出版日期: 2020-11-02

基金资助

内蒙古农业大学大学生科技创新基金项目(KJCX2019001); 内蒙古农业大学动物科学学院青年基金项目(QN201914)

Optimization of water extraction technology by response surface methodology for flavonoids in Portulaca oleracea L. and its antioxidant activity assessment

  • WANG Jie ,
  • WANG Ruifang ,
  • WANG Yuan ,
  • REN Xuerong ,
  • CHEN Qiuyan ,
  • QI Jingwei ,
  • WANG Haoran ,
  • YANG Fan ,
  • ZHAO Xuyang ,
  • GUO Wenhao ,
  • AN Xiaoping
Expand
  • 1(College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China);
    2(Inner Mongolia Research Center of Herbivorous Livestock Feed Engineering Technology, Hohhot 010018,China)

Received date: 2020-04-21

  Revised date: 2020-05-29

  Online published: 2020-11-02

摘要

采用响应面法优化马齿苋黄酮的提取条件,筛选出最佳水提工艺;通过测定马齿苋黄酮的还原力,1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基和羟自由基(·OH)清除能力评价其体外抗氧化活性;通过AAPH诱导建立斑马鱼氧化应激模型,以仔鱼体内活性氧(reactive oxygen species,ROS)产生率、细胞死亡率和脂质过氧化生成率评价马齿苋黄酮对AAPH诱导斑马鱼仔鱼氧化应激的缓解作用。结果表明,马齿苋黄酮的最佳提取工艺为:提取时间55.5 min,提取温度59.27 ℃,料液比1∶19.28(g∶mL),在此条件下黄酮含量达到16.98 mg/g;体外抗氧化活性研究显示马齿苋黄酮具有一定还原力,且对DPPH自由基和·OH均具有较强的清除作用;50~300 μg/mL的马齿苋黄酮预处理可显著降低AAPH诱导后斑马鱼仔鱼ROS产生率,细胞死亡率和脂质过氧化生成率(P<0.05),且其缓解作用呈剂量依赖性。综上,马齿苋黄酮具有较强的体内和体外抗氧化活性,可作为一种天然的抗氧化剂,研究结果将为马齿苋资源的深度开发利用提供数据支撑。

本文引用格式

王杰 , 王瑞芳 , 王园 , 任雪荣 , 陈秋燕 , 齐景伟 , 王浩然 , 杨帆 , 赵旭阳 , 郭文浩 , 安晓萍 . 响应面优化马齿苋黄酮水提工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2020 , 46(19) : 197 -204 . DOI: 10.13995/j.cnki.11-1802/ts.024263

Abstract

The present study aimed to explore the optimum water extraction conditions of flavonoids from Portulaca oleracea L. and evaluate its antioxidant activity in vitro and in vivo. Extraction time, temperature and material-water ratio were enrolled in this experiment, and total flavonoids was used to evaluate the extraction process. The response surface methodology was used to optimize the extraction process. Moreover, the antioxidant activity of flavonoids in vitro was evaluated by measuring the reducing power, the scavenging ability of DPPH and hydroxyl radicals. And the in vivo activity was assessed by establishing oxidative stress model of zebrafish induced by AAPH. The results showed that the optimized water extraction process was as follows: extraction was performed at 59.27 ℃ for 55.5 min and the ratio of material to water was 1∶19.28(g∶mL). Under the optimal conditions, the content of flavonoids from P. oleracea L. was 16.98 mg/g. Moreover, the antioxidant results showed that flavonoids from P. oleracea L. had a certain reducing power and strong scavenging effect on DPPH and hydroxyl radicals. Different concentrations of purslane flavonoids (50, 100, 200, 300 μg/mL) could significantly reduce the ROS production rate, cell death rate and lipid peroxidation production rate of zebrafish larval induced by AAPH. And this alleviatory effect of flavonoids on oxidative stress of zebrafish was dose-dependent. Therefore, the analysis results obtained by response surface method are reliable, efficient and simple, and can be used for extraction of flavonoids from P. oleracea L. The flavonoids from P. oleracea L. exhibit obvious antioxidant activity in vitro and in vivo and could be used as a natural antioxidant. This is the first time to report in vivo antioxidant effect of flavonoids from P. oleracea L. through zebrafish model. It provides a basis for deep exploitation and utilization of flavonoids from P. oleracea L.

参考文献

[1] 张晓艳, 王波, 黄攀, 等.马齿苋不同器官多糖提取物的抗氧化性研究[J]. 食品工业科技, 2017, 38(5): 130-133.
[2] 丁怀伟, 姚佳琪, 宋少江. 马齿苋的化学成分和药理活性研究进展[J]. 沈阳药科大学学报, 2008, 25(10): 831-838.
[3] 王波, 张晓艳, 黄攀, 等. 响应面法优化马齿苋黄酮超声波提取工艺[J]. 江苏农业学报, 2018, 34(1): 166-171.
[4] 苏锐, 张红. 马齿苋黄酮抗氧化活性研究[J]. 安徽农业科学, 2010, 38(8): 4 068-4 070.
[5] 陈国妮. 马齿苋黄酮类化合物的提取及抗菌特性研究[D]. 西安: 西安工程大学, 2016.
[6] 王毅兵, 马齿苋水煎液抗单纯疱疹病毒的实验研究[J]. 临床合理用药, 2011, 4(4B): 52-53.
[7] 梁艳妮, 唐志书, 张晓群, 等.马齿苋总黄酮的超声波辅助提取工艺优化及其抗氧化、抗肿瘤活性研究[J]. 中国农学通报, 2019, 35(4): 130-135.
[8] 郑智音, 贾晓斌, 舒娈, 等.鲜马齿苋多糖、生物碱和多酚类组分的制备及其降血糖活性研究[J]. 中草药, 2014, 45(18): 2 673-2 677.
[9] 葛一漫, 张朝明, 胡一梅, 等.马齿苋提取物对急性湿疹大鼠皮肤TNF-α与IL-4表达的影响[J]. 中国免疫学杂志, 2014, 30(12): 1 637-1 640.
[10] 章爱华, 邓斌, 蒋刚彪, 等.马齿苋黄酮提取液抗氧化活性的初步研究[J]. 食品科技, 2008, 29(8): 140-143.
[11] SI C L, SHEN T, JIANG Y Y, et al.Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells[J]. Food and Chemical Toxicology, 2013, 59: 145-152.
[12] JUN W J, SEONG H S, CHUN H, et al.Determination of antioxidative potentials of Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem. in differentiated HL-60 cells[J]. Food Chemistry, 2007, 105(4): 1 557-1 563.
[13] KIM Y G, SUMIYOSHI M, SAKANAKA M, et al.Effects of ginseng saponins isolated from red ginseng on ultraviolet B-induced skin aging in hairless mice[J]. European Journal of Pharmacology, 2009, 602(1): 148-156.
[14] LAWRENCE C.The husbandry of zebrafish (Danio rerio): A review[J]. Aquaculture, 2007, 269(1-4): 1-20.
[15] SETO S W, KIAT H, LEE S M Y, et al. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research[J]. European Journal of Pharmacology, 2015, 768: 77-86.
[16] KANG M C, KIM S Y, KIM E A, et al.Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model[J]. Carbohydrate Polymers, 2015, 127: 38-46.
[17] KIM E A, LEE S H, KO C, et al.Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model[J]. Carbohydrate Polymers, 2014, 102: 185-191.
[18] KIM S Y, KIM E A, KANG M C, et al.Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model[J]. Algae, 2014, 29(2): 165-174.
[19] 倪立颖, 邹娅雪, 付晓婷, 等. 利用LPS诱导胚胎期斑马鱼炎症模型研究羊栖菜多酚抗炎机制[J]. 食品工业科技, 2019, 40(21): 279-285.
[20] LEE S H, KO C I, JEE Y, et al.Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model[J]. Carbohydrate Polymers, 2013, 92(1): 84-89.
[21] 翟硕莉, 付艳梅. 马齿苋黄酮提取方法研究进展[J]. 衡水学院学报, 2012, 14(4): 39-41.
[22] 赵华, 张慧明, 董银卯, 等.银杏叶黄酮类化合物水提工艺的响应面优化[J].北京工商大学学报(自然科学版), 2010, 28(3): 27-31;43.
[23] JIA X, DING C, YUAN S, et al.Extraction, purification and characterization of polysaccharides from Hawk tea[J]. Carbohydrate Polymers, 2014, 99: 319-324.
[24] ZHANG Z, WANG X, ZHANG J, et al.Potential antioxidant activities in vitro of polysaccharides extracted from ginger (Zingiber officinale)[J]. Carbohydrate Polymers, 2011, 86(2): 448-452.
[25] 邹娅雪, 付晓婷, 段德麟,等.利用斑马鱼模型研究琼胶寡糖抗氧化机制[J].食品工业科技, 2019, 40(4): 286-291;298.
[26] 陈红梅, 谢翎. 响应面法优化半枝莲黄酮提取工艺及体外抗氧化性分析[J]. 食品科学, 2016, 37(2): 45-50.
文章导航

/