探究微波真空冷冻干燥功率对鸡蛋清中水分迁移、热力学特性及凝胶微观结构的影响。采用低场核磁共振技术、差示扫描量热分析(differential scanning calorimetry,DSC)和扫描电子显微镜(scanning electron microscopy,SEM)测定不同微波功率干燥条件下鸡蛋清中的水分迁移规律、蛋白的热力学特性和凝胶微观结构。结果表明,状态最为活跃的自由水在干燥过程中最先被除去,在90~180 min内脱除的速率最快;提高微波功率能够加快水分迁移的速度,有利于干燥的进行。DSC结果表明,微波功率为400 W和500 W时,蛋清粉峰值温度较高,从而引起蛋白质结构由有序变为无序。SEM结果表明,增大微波功率,鸡蛋清凝胶结构的孔道和孔径也随之增加,结构也变得较为疏松。该研究为微波真空冷冻干燥鸡蛋清粉工艺优化提供参考。
[1] 代晓凝,刘丽莉,陈珂,等.不同干燥方式对鸡蛋清粉蛋白质凝胶特性及结构的影响[J].食品与发酵工业,2019,45(19):112-118.
[2] ZHANG Junhe, GAO Haiyan, SHI Rui. Technological study on instant date powder in natural ziziphus jujuba through vacuum freeze-drying[J].农业科学与技术(英文版),2010,11(7):69-71;175.
[3] LI L L, ZHANG Min, SONG Xiaoning, et al. Changes in unfrozen Water content and dielectric properties during pulse vacuum osmotic dehydration to improve microwave freeze-drying characteristics of Chinese yam[J].Journal of the Science of Food and Agriculture,2019,99(14):6 572-6 581.
[4] FAN Kai, ZHANG Min, ARUN S MUJUMDAR. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review[J].Critical Reviews in Food Science and Nutrition,2019,59(8):1 357-1 366.
[5] YASUMASA ANDO,SHOJI HAGIWARA,HIROSHI NABETANI,et al. Improvements of drying rate and structural quality of microwave-vacuum dried carrot by freeze-thaw pretreatment[J]. LWT-Food Science and Technology,2019,100:294-299.
[6] 颜建春,胡志超,吴朋来, 等.热板-微波联合真空冷冻干燥茭白工艺优化[J].农业工程学报,2017,33(1):262-270.
[7] 阙婷婷,张佳琪,张慧, 等.真空微波干燥与真空冷冻干燥对鱼糜干制品质量的影响[J].食品工业科技,2012,33(23):253-257;262.
[8] LITVIN S,MANNHElM C H,MILTZ J.Dehydration of carrots by a combination of freeze drying,microwave heating and air or vacuum drying[J].Journal of Food Engineering,1998,36(1):103-111.
[9] ZHOU Bing, ZHANG Min, FANG Zhongxiang, et al. A combination of freeze drying and microwave vacuum drying of duck egg white protein powders[J].Drying Technology,2014,32(15):1 840-1 847.
[10] 汤梦情,陈宏伟,朱蕴兰,等.微波真空与真空冷冻组合干燥对芦笋营养与品质的影响[J].食品研究与开发,2019,40(5):76-81.
[11] 任广跃,任丽影,张伟,等.正交试验优化怀山药微波辅助真空冷冻干燥工艺[J].食品科学,2015,36(12):12-16.
[12] AHMET POLAT, ONUR TASKIN, NAZMI IZLI, et al. Continuous and intermittent microwave-vacuum drying of apple: Drying kinetics, protein, mineral content, and color[J].Journal of Food Process Engineering,2019,42(3):e13 012.
[13] LI Chunbao, LIU Dengyong, ZHOU Guanghong,et al. Meat quality and cooking attributes of thawed pork with different low field NMR T21.[J].Meat Science,2012,92(2):79-83.
[14] 邵小龙,张蓝月,冯所兰.低场核磁技术检测芝麻油掺假[J].食品科学,2014,35(20):110-113.
[15] DANIEL CABALLERO,ANDRÉS CARO,PABLO G. Modeling salt diffusion in Iberian ham by applying MRI and data mining[J]. Journal of Food Engineering,2016,189:115-122.
[16] 张楠,庄昕波,黄子信, 等.低场核磁共振技术研究猪肉冷却过程中水分迁移规律[J].食品科学,2017,38(11):103-109.
[17] 李娜,李瑜.利用低场核磁共振技术分析冬瓜真空干燥过程中的内部水分变化[J].食品科学,2016,37(23):84-88.
[18] 隋思瑶,孙灵湘,王毓宁,等.基于低场核磁共振技术研究大米冻融过程中水分状态变化[J].食品安全质量检测学报,2019,10(20):6 849-6 854.
[19] HU Xuanye, WU Ping, ZHANG Shiping, et al. Moisture conversion and migration in single-wheat kernel during isothermal drying process by LF-NMR[J].Drying Technology,2019,37(7):803-812.
[20] 李定金,段振华,刘艳,等.利用低场核磁共振技术研究调味山药片真空微波干燥过程中水分的变化规律[J].食品科学,2019,40(5):116-123.
[21] 吉琳琳,夏阿林.基于低场核磁共振技术的大米水分含量及活度快速预测[J].食品与机械,2018,34(11):70-74;95.
[22] 冯爱博,杨光,贺亮, 等.低场核磁共振技术对不同贮藏条件下雷竹笋水分迁移规律的研究[J].食品与发酵科技,2018,54(1):18-23.
[23] 朱文学,尤泰斐,白喜婷,等.基于低场核磁的马铃薯切片干燥过程水分迁移规律研究[J].农业机械学报,2018,49(12):364-370.
[24] 段柳柳,段续,任广跃.微波冻干怀山药脆片干燥过程中脆性变化与数学模型的建立[J].食品科学,2018,39(23):29-35.
[25] 邵小龙,汪椭,时小转,等.水稻生长过程中籽粒水分状态和横向弛豫特性分析[J].中国农业科学,2017,50(2):240-249.
[26] 田其英,华欲飞.大豆蛋白溶解性研究[J].粮食与油脂,2006(6):6-8.
[27] YAKOUTA KHALDI, LEILA TOUNSI, MOHAMED AMINE BALTI, et al. Impact of microwave drying on sesame coats quality[J].Journal of Food Process Engineering,2018,41(7):e12 860.
[28] 莫耽,黄行健,段雅庆,等.辐照对大豆分离蛋白功能特性影响[J].食品科学,2011,32(1):52-55.
[29] CÁRCEL J A, GARCIA-PEREZ J V, RIERA E, et al. Improvement of convective drying of carrot by applying power ultrasound-influence of mass load density[J].Drying Technology,2011,29(2):174-182.
[30] 马怡童,朱文学,白喜婷,等.超声强化真空干燥全蛋液的干燥特性与动力学模型[J].食品科学,2018,39(3):142-149.